[1] KAYALVIZHI S,MALARVIZHI S.A novel encrypted compressive sensing of images based on fractional order hyper chaotic Chen system and DNA operations[J].Multimedia Tools and Applications, 2020,79:3957-3974. [2] ZOUAD F,KEMIH K,HAMICHE H.A new secure communication scheme using fractional order delayed chaotic system: design and electronics circuit simulation[J].Analog Integrated Circuits and Signal Processing,2019,99(3):619-632. [3] LI R G,WU H N.Secure communication on fractional-order chaotic systems via adaptive sliding mode control with teaching-learning-feedback-based optimization[J].Nonlinear Dynamics,2019,95(2):1221-1243. [4] LI P,XU J,MOU J,et al.Fractional-order 4D hyperchaotic memristive system and application in color image encryption[J].EURASIP Journal on Image and Video Processing,2019,22:1491. [5] SAID L A,RADWAN A G,MADIAN A H,et al.Three fractional-order-capacitors-based oscillators with controllable phase and frequency[J].Journal of Circuits,Systems and Computers,2017,26(10):17501601-175016022. [6] ABDELATY A M,RADWAN A G,ELWAKIL A S,et al.TransientTransient and steady-state response of a fractional-order dynamic PV model under different loads [J].Journal of Circuits,Systems and Computers,2018,27(2):18500231-1850023-25. [7] ELWAKIL A S,ALLAGUI A,FREEBORN T J,et al.Further experimental evidence of the fractional-order energy equation in supercapacitors[J].AEU-International Journal of Electronics and Communications,2017,78:209-212. [8] TIAN A H,FU C B,XIONG H G,et al.Innovative intelligent methodology for the classification of soil salinization degree using a fractional-order master-slave chaotic system[J].International Journal of Bifurcation and chaos,2019,29(2):1950026. [9] GRIGORENKO I,GRIGORENKO E.Chaotic dynamics of the fractional Lorenz system[J].Physical Review Letters,2003,91(3):034101. [10] LI C,CHEN G.Chaos and hyperchaos in the fractional-order R<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml1-1006-3471-47-1-105"><mml:mover accent="true"><mml:mi>o</mml:mi><mml:mtext fontstyle="italic">¨</mml:mtext></mml:mover></mml:math></inline-formula>ssler equations[J].Physica A:Statistical Mechanics and its Applications,2004,341:55-61. [11] LI C,CHEN G.Chaos in the fractional order Chen system and its control[J].Chaos,Solitons & Fractals,2004,22(3):549-554. [12] DENG W H,LI C P.Chaos synchronization of the fractional Lü system[J].Physica A:Statistical Mechanics and its Applications,2005,353:61-72. [13] PETRAS I.A note on the fractional-order Chua’s system[J].Chaos,Solitons & Fractals,2008,38(1):140-147. [14] GAO X,YU J.Chaos in the fractional order periodically forced complex Duffing’s oscillators[J].Chaos,Solitons & Fractals,2005,24(4):1097-1104. [15] LU J J,LIU C X.Realization of fractional-order Liu chaotic system by circuit[J].Chinese Physics,2007,16(6):1586. [16] GHOLAMIN P,SHEIKHANI A H R.Dynamical analysis of a new three-dimensional fractional chaotic system[J].Pramana,2019,92(6):151. [17] ZHANG S,ZENG Y,LI Z.One to four-wing chaotic attractors coined from a novel 3D fractional-order chaotic system with complex dynamics[J].Chinese Journal of Physics,2018,17:31435. [18] MUNOZ-PACHECO J M,ZAMBRANO-SERRANO E,CH V,et al.A fractional order chaotic system with a 3D grid of variable attractors [J].Chaos,Solitons & Fractals,2018,113:69-78. [19] ZHOU C,LI Z,ZENG Y,et al.A novel 3D fractional-order chaotic system with multifarious coexisting attractors[J].International Journal of Bifurcation and Chaos,2019,29(1):1-16. [20] SUMATHI R,UMASANKAR P.Optimal design of fractional order PID controller for time-delay systems:an IWLQR technique[J].International Journal of General Systems,2018,47(1):1-17. [21] SOUKKOU A,BOUKABOU A,GOUTAS A.Generalized fractional-order time-delayed feedback control and synchronization designs for a class of fractional-order chaotic systems[J].International Journal of General Systems,2018,47(7/8):679-713. [22] HUANG C,CAO J.Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system[J].Physica A Statistical Mechanics & Its Applications,2017,473(2):526-537. [23] LI Y,HOU B.Observer-based sliding mode synchronization for a class of fractional-order chaotic neural networks[J].Advances in Difference Equations,2018(1):146. [24] TIRANDAZ H,KARAMIMOLLAEE A.Combination synchronization of multiple chaotic systems with uncertain parameters using adaptive hybrid modified projective control method[J].Acta Physica Polonica B,2018,49(1):59. [25] YANG R,ZHENG W X.Two-dimensional sliding mode control of discrete-time fornasini-marchesini systems[J].IEEE Transactions on Automatic Control,2019,64(9):3943-3948. [26] ZU?IGA-AGUILAR C J,GÓMEZ-AGUILAR J F,ESCOBAR-JIMÉNEZ R F,et al.Robust control for fractional variable-order chaotic systems with non-singular kernel [J].European Physical Journal Plus,2018,133:13. [27] ZHANG F,SUN K,CHEN Y,et al.Parameters identification and adaptive tracking control of uncertain complex-variable chaotic systems with complex parameters[J].Nonlinear Dynamics,2019(95):3161-3176. [28] LI R G,WU H N.Adaptive synchronization control based on QPSO algorithm with interval estimation for fractional-order chaotic systems and its application in secret communication[J].Nonlinear Dynamics,2018(92):935-959. [29] BEHINFARAZ R,GHAEMI S,KHANMOHAMMADI S.Adaptive synchronization of new fractional-order chaotic systems with fractional adaption laws based on risk analysis[J].Mathematical Methods in the Applied Sciences,2019,42(6):1772-1785. [30] DIETHELM K,FORD N J,FREED A D.A predictor-corrector approach for the numerical solution of fractional differential equations[J].Nonlinear Dynamics,2002,29(1/2/3/4):3-22. |