[1] MISHRA S P,DASH P K.Short term wind speed prediction using multiple kernel pseudo inverse neural network [J].International Journal of Automation and Computing,2018,15(1):66-83. [2] 田中大,李树江,王艳红,等.短期风速时间序列混沌特性分析及预测 [J].物理学报,2015,64(3):236-247. [3] LIU D,NIUD X,WANG H,et al.Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm [J].Renewable Energy,2014,62:592-597. [4] 张 妍,韩 璞,王东风,等.基于变分模态分解和LSSVM的风电场短期风速预测 [J].太阳能学报,2018,39(1):194-202. [5] QIN Q,FENG Y W,LI F.Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network [J].Journal of Systems Engineering and Electronics,2018,29(6):1317-1326. [6] 唐舟进,任 峰,彭 涛,等.基于迭代误差补偿的混沌时间序列最小二乘支持向量机预测算法 [J].物理学报,2014,63(5):78-87. [7] AMANI T,JORDI M,ALI K,et al.Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments [J].Chinese Physics B,2014,23(4):414-425. [8] BREIMAN L.Random forests [J].Machine Learning,2001,45(1):5-32. [9] 李 国,江晓东.基于提升回归树与随机森林的风电功率集成预测方法 [J].电力系统及其自动化学报,2018,30(11):70-74. [10] 方馨蕊,温兆飞,陈吉龙,等.随机森林回归模型的悬浮泥沙浓度遥感估算 [J].遥感学报,2019,23(4):756-772. [11] SUN Z X,SUN H X,ZHANG J X.Multistep wind speed and wind power prediction based on a predictive deep belief network and an optimized random forest [J].Mathematical Problems in Engineering,2018,4:1-15. [12] 赵 东,臧雪柏,赵宏伟.基于果蝇优化的随机森林预测方法 [J].吉林大学学报(工学版),2017,47(2):609-614. [13] 李东辉,尹海燕,郑博文.基于MFOA-GRNN模型的年电力负荷预测 [J].电网技术,2018,42(2):585-590. [14] LOH W X.Classification and regression trees [J].Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery,2011,1(1):14-23. [15] BREIMAN L.Bagging predictors [J].Machine Learning,1996,24(2):123-140. [16] PAN W T.A new fruit fly optimization algorithm:taking the financial distress model as an example [J].Knowledge-Based Systems,2012,26:69-74. [17] WU L,LIU Q,TIAN X,et al.A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems [J].Knowledge-Based Systems,2018,144:153-173. [18] GENUER R,POGGI J M,TULEAU-MALOT C.Variable selection using random forests [J].Pattern Recognition Letters,2010,31(14):2225-2236. [19] PROBST P,WRIGHT M,BOULESTEIX A L.Hyperparameters and tuning strategies for random forest [J].Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,2018,9(3):1-18. [20] RODRIGUEZ-GALIANO V,GHIMIRE B,ROGAN J,et al.An assessment of the effectiveness of a random forest classifier for land-cover classification [J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,67:93-104. |