[1] LECUN Y,BENGIO Y,HINTON G.Deep learning [J].Nature,2015,521(7553):436. [2] YOSINSKI J,CLUNE J,BENGIO Y,et al.How transferable are features in deep neural networks [C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2014:3320-3328. [3] PAN S J,YANG Q.A survey on transfer learning [J].IEEE Transactions on Knowledge & Data Engineering,2010,22(10):1345-1359. [4] GEBRU T,HOFFMAN J,FEI-FEI L.Fine-grained recognition in the wild:a multi-task domain adaptation approach [C] //Proceedings of the 2017 IEEE International Conference on Computer Vision.Washington:IEEE Computer Society,2017:1358-1367. [5] XIA Rui,ZONG Chengqing,HU Xuelei,et al.Feature ensemble plus sample selection:domain adaptation for sentiment classification [J].IEEE Intelligent Systems,2013,28(3):10-18. [6] TZENG E,HOFFMAN J,ZHANG N,et al.Deep domain confusion:maximizing for domain invariance [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2014:4010-4019. [7] LONG Mingsheng,CAO Yue,WANG Jianmin,et al.Learning transferable features with deep adaptation networks [C]//Proceedings of the 32th International Conference on Machine Learning.New York:ACM,2015:97-105. [8] LONG Mingsheng,ZHU Han,WANG Jianmin,et al.Deep transfer learning with joint adaptation networks [C]//Proceedings of the 34th International Conference on Machine Learning.New York:ACM,2017:2208-2017. [9] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets [C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2014:2672-2680. [10] TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial discriminative domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2017:2962-2971. [11] GANIN Y,USTINOVA E,AJAKAN H,et al.Domain adversarial training of neural networks [J].The Journal of Machine Learning Research,2016,17(1):2096-2030. [12] MIRZA M,OSINDERO S.Conditional generative adversarial nets [EB/OL].[2020-06-05].https://arxiv.org/abs/1411.1784. [13] TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial discriminative domain adaptation [C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:2962-2971. [14] LONG Mingsheng,WANG Jianmin,DING Guiguang,et al.Transfer feature learning with joint distribution adaptation [C]//Proceedings of the 2013 IEEE International Conference on Computer Vision.Washington:IEEE Computer Society,2013:2200-2207. [15] PAN S J,TSANG I W,KWOK J T,et al.Domain adaptation via transfer component analysis [J].IEEE Transactions on Neural Networks,2011,22(2):199-210. [16] WANG Zeya,JING Baoyu,NI Yang,et al.Adversarial domain adaptation being aware of class relationships [C]//24th European Conference on Artificial Intelligence (ECAI 2020).Santiago de Compostela,Spain:[s.n.],2020:1-8. [17] CICEK S,SOATTO S.Unsupervised domain adaptation via regularized conditional alignment [C]//2019 IEEE Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2019:1415-1420. [18] SAITO K,WATANABE K,USHIKU Y,et al.Maximum classifier discrepancy for unsupervised domain adaptation [C]//2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2018:3723-3732. [19] SAENKO K,KULIS B,FRITZ M,et al.Adapting visual category models to new domains [C]//Proceedings of the 11th European Conference on Computer Vision.Berlin:Springer,2010:213-226. [20] PASZKE A,GROSS S,CHINTALA S,et al.Automatic differentiation in PyTorch [C]//31st Conference on Neural Information Processing System (NIPS 2017).Long Beach,CA,USA:[s.n.],2017:1-4. [21] DENG J,DONG W,SOCHER R,et al.ImageNet:a large-scale hierarchical image database [C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2009:248-255. [22] WANG Mei,DENG Weihong.Deep visual domain adaptation:a survey [J].Neurocomputing,2018,312(27):135-153. [23] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2016:770-778. |