[1] 唐贵基,庞 彬.ITT变换在风电机组滚动轴承故障诊断中的应用 [J].电力自动化设备,2017,37(9):83-89. [2] 刘 乐.基于局部均值分解的滚动轴承故障诊断系统研究与应用 [D].太原:中北大学,2017. [3] 王玉静,那晓栋,康守强,等.基于EEMD-Hilbert包络谱和DBN的变负载下滚动轴承状态识别方法 [J].中国电机工程学报,2017,37(23):6943-6950. [4] YAN X A,JIA M P.A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing [J].Neurocomputing,2018,313:47-64. [5] 袁莉芬,孙业胜,何怡刚,等.基于小波包优选的模拟电路故障特征提取方法 [J].电工技术学报,2018,33(11):158-165. [6] WANG L,LIU Z,MIAO Q,et al.Time-frequency analysis based on ensemble local mean decomposition andfast Kurtogram for rotating machinery fault diagnosis [J].Mechanical Systems and Signal Processing,2018,103(3):60-75. [7] 唐贵基,王晓龙.变分模态分解方法及其在滚动轴承早期故障诊断中的应用 [J].振动工程学报,2016,29(4):638-648. [8] 李宏坤,杨 蕊,任远杰,等.利用粒子滤波与谱峭度的滚动轴承故障诊断 [J].机械工程学报,2017,53(3):63-72. [9] MAO W T,HE L,WANG J W,et al.Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine [J].Mechanical Systems and Signal Processing,2017,83(1):450-473. [10] 陈 鹏,赵小强,朱奇先.基于VMD-MPE-KPCA特征提取与MRVM相混合的滚动轴承故障诊断方法 [J].兰州理工大学学报,2020,46(5):92-99. [11] 庄福振,罗 平,何 清,等.迁移学习研究进展 [J].软件学报,2015,26(1):26-39. [12] ZHANG W,PENG G L,LI C H,et al.A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals [J].Sensors,2017,17(2):425. [13] LU C,WANG Z Y,QIN W L,et al.Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification [J].Signal Processing,2017,130(1):377-388. [14] JING L,ZHAO M,LI P,et al.A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox [J].Measurement,2017,111(12):1-10. [15] 孔子迁,邓 蕾,汤宝平,等.基于时频融合和注意力机制的深度学习行星齿轮箱故障诊断方法 [J].仪器仪表学报,2019,40(6):221-227. [16] 陈志刚,杜小磊,王衍学,等.改进集成深层自编码器在轴承故障诊断中的应用 [J].控制与决策,2021,36(1):135-142. [17] ZHANG W,LI C,PENG G,et al.A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load [J].Mechanical Systems and Signal Processing,2018,100(2):439-453. [18] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway,NJ,USA:IEEE,2016:770-778. [19] YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions [C/OL].[2020-10-10].https://arxiv.org/pdf/1511.07122.pdf. [20] LI Q,WANG H.A research review of Hilbert-Huang transform used for rolling bearing fault diagnosis [J].Applied Mechanics and Materials,2013,397(9):4558-4568. [21] HE K M,ZHANG X Y,REN S Q,et al.Identity mappings in deep residual networks [C]//European Conference on Computer Vision.[S.l.]:Springer International Publishing,2016:630-645. |