[1] WANG G,XU Z.Solving a kind of restricted matrix equations and Cramer rule [J].Applied Mathematics and Computation,2005,162(1):329-338. [2] 王 飞,王 婷,王慧萍.基于负荷比值的计量供热间连网质调节方程 [J].太原理工大学学报,2008,39(3):316-319. [3] 赵林明.水轮机流量调节方程的应用研究 [J].华北水利水电学院学报,1990(3):57-69. [4] 王 飞,王 婷.基于负荷系数的固定供水温度量调节方程 [J].建筑热能通风空调,2008,27(4):46-48. [5] GUO B Z,MENG T.Robust output regulation for Timoshenko beam equation with two inputs and two outputs [J].International Journal of Robust and Nonlinear Control,2020,31(4):1245-1269. [6] CORROCHANO E B.A survey on quaternion algebra and geometric algebra applications in engineering and computer science 1995-2020 [J].IEEE Access,2021,9:104326-104355. [7] PEI S C,CHANG J H,DING J J.Commutative reduced biquaternions and their Fourier transform for signal and image processing applications [J].IEEE Transactions Signal Processing,2004,52(7):2012-2031. [8] HIDAYET H K.Least-squares solutions of the reduced biquaternion matrix equation AX=B and their applications in colour image restoration [J]. Journal of Modern Optics, 2019,66(18):1-9. [9] KYRCHEI I I.Cramer's rule for quaternionic systems of linear equations [J].Journal of Mathematical Sciences,2008,155(6):839-858. [10] 程代展,齐洪胜.矩阵半张量积的基本原理与适用领域 [J].系统科学与数学,2012,32(12):1488-1496. [11] LU J Q,LI H T,LIU Y,et al.Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems [J].IET Control Theory and Applications,2017,11(13):2040-2047. [12] LI H T,WANG Y Z,LIU Z B.On the observability of free Boolean networks via the semi-tensor product method [J].Journal of Systems Science and Complexity,2014,4:666-678. [13] FU F Q,WEI W,ZHOU Y,et al.Research on semi-tensor product solution method for optimal decision of a class of multi-valued control networks [J].Advances in Applied Mathematics,2018,7(10):1308-1316. [14] 葛爱冬,王玉振,魏爱荣.基于矩阵半张量积方法的随机模糊系统控制器设计 [J].山东大学学报(工学版),2013,43(3):30-37. [15] 丁文旭,李 莹,王 栋,等.基于矩阵半张量积求解弱双四元数矩阵方程AX=B [J].数学的实践与认识,2021,51(8):253-259. [16] 程代展,夏元清,马宏宾,等.矩阵代数、控制与博弈 [M].北京:北京理工大学出版社,2016. [17] 戴 华.矩阵论 [M].北京:北京科学出版社, 2001. |