[1] ARVANITOYEORGOS A,CHRYSIKOS I,SAKANE Y.Homogeneous Einstein metrics on G2/T [J].Proc Amer Math Soc,2013,14(1):2485-2499. [2] WANG Y,LI T Z,ZHAO G S.New homogeneous Einstein metrics on SO(7)/T [J].Chinese Annals of Mathematics,2018,39(1):97-110. [3] SAKANE Y.Homogeneous Einstein metrics on flag manifolds [J].Lobachevskii Journal of Mathematics,1999,4:71-87. [4] WANG Y,LI T Z.Invariant Einstein metrics on SU(4)/T [J].Advances Math,2014,43(5):782-788. [5] ARVANITOYEORGOS A,CHRYSIKOS I.Invariant Einstein metrics on generalized flag manifolds with four isotropy summands [J].Ann Glob Anal Geom,2010,37:185-219. [6] ALEKSEEVSKY D V.Flag manifolds [J].Zb Rad Mat Inst Beograd,1997,6(14):3-35. [7] ALEKSEEVSKY D V,PERELOMOV A M.Invariant Kähler-Einstein metrics on compact homogeneous space [J].Funct Anal Appl,1986,20(3):171-182. [8] WANG Y,ZHAO G S.Homogeneous Einstein metrics on certain generalized flag manifolds with six isotropy summands [J].Results in Mathematics,2015,67:1-47. [9] CHRYSIKOS I.Flag manifolds,symmetric t-triples and Einstein metrics [J].Differential Geometry and Its Applications,2012,30:642-659. [10] WANG Y,ZILLER W E.Existence and non-existence of homogeneous Einstein metrics [J].Invent Math,1986,84:177-194. [11] PARK J S,SAKANE Y.Invariant Einstein metrics on certain homogeneous spaces [J].Tokyo Journal of Mathematics,1997,20(1):51-61. [12] ONISHCHIK A L,VINBERG E B.Lie groups and Lie algebras III,structure of Lie groups and Lie algebras [M].Heideberg:Springer-Verlag,1994. |