[1] QIN H H,WEI T.Two regularization methods for the Cauchy problems of the Helmholtz equation [J].Appl Math Model,2010,34:947-967. [2] CHEN J T,WONG F C.Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition [J].J Sound Vib,1998,217(1):75-95. [3] HALL W S,MAO X Q.Boundary element investigation of irregular frequencies in electromagnetic scattering [J].Eng Anal Bound Elem,1995,16(3):245-252. [4] ISAKOV V.Inverse problems for partial differential equations [M].New York:Springer-Verlag,1998. [5] REGIŃSKA T,REGIŃSKI K.Approximate solution of a Cauchy problem for the Helmholtz equation [J].Inverse Prob,2006,22:975-989. [6] XIONG X T.A regularization method for a Cauchy problem of the Helmholtz equation [J].J Comput Appl Math,2010,233:1723-1732. [7] FENG X L,FU C L,CHENG H.A regularization method for solving the Cauchy problem for the Helmholtz equation [J].Appl Math Model,2011,35:3301-3315. [8] LI Z P,XU C,LAN M,et al.A mollification method for a Cauchy problem for the Helmholtz equation [J].Int J Comput Math,2018,95(11):2256-2268. [9] HE S,DI C,LI Y.The mollification method based on a modified operator to the ill-posed problem for 3D Helmholtz equation with mixed boundary [J].Appl Numer Math,2021,160:422-435. [10] QIAN Z,FENG X L.A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation [J].Applicable Analysis,2017,96(10):1656-1668. [11] KAVEH H S,ADIBI H.Mapped Regularization methods for the Cauchy problem of the Helmholtz and Laplace equation [J].Iran J Sci Technol Trans Sci,2021,45:669-682. [12] ANDREAS K.An introduction to the mathematical theory of inverse problems [M].New York:Springer-Verlag,1996. [13] 熊向团,任丽婷.一种修正的Tikhonov方法求解拉普拉斯方程的柯西问题 [J].西北师范大学学报(自然科学版),2018,54(5):1-4. |