[1] HENGYU Z.A New cost-sensitive SVM algorithm for imbalanced dataset[C]//2021 IEEE International Conference on Consumer Electronics and Computer Engineering(ICCECE).Guangzhou:IEEE,2021:402-407. [2] 赵小强,张 露.一种改进的数据挖掘模糊支持向量机分类算法[J].兰州理工大学学报,2017,43(5):94-99. [3] BOONCHUAY K,SINAPIROMSARAN K,LURSINSAP C.Decision tree induction based on minority entropy for the class imbalance problem[J].Pattern Analysis and Applications,2017,20(3):769-782. [4] YUAN B W,LUO X G,ZHANG Z L,et al.A novel density-based adaptive k nearest neighbor method for dealing with overlapping problem in imbalanced datasets[J].Neural Computing and Applications,2021,33(9):4457-4481. [5] SOH W W,YUSUF R M.Predicting credit card fraud on a imbalanced data[J].International Journal of Data Science and Advanced Analytics,2019(1):12-17. [6] WU L,XIANG Y,YANG Y,et al.A classification model for class imbalance problem in protein subnuclear localization[C]//2018 11th International Congress on Image and Signal Processing,BioMedical Engineering and Informatics (CISP-BMEI).Beijing:IEEE,2018:1-9. [7] 陈 果,杨默晗,于平超.基于深度学习的航空发动机不平衡故障部位识别[J].航空动力学报,2020,35(12):2602-2615. [8] ZHANG J,CHEN L,TIAN J X,et al.Breast cancer diagnosis using cluster-based undersampling and boosted C5.0 algorithm[J].International Journal of Control,Automation and Systems,2021,19(5):1998-2008. [9] CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16:321-357. [10] PAKRASHI A,MAC NAMEE B.Kalman filter-based heuristic ensemble(KFHE):a new perspective on multi-class ensemble classification using Kalman filters[J].Information Sciences,2019,485:456-485. [11] CHAWLA N V,LAZAREVIC A,HALL L O,et al.SMOTEBoost:improving prediction of the minority class in boosting[C]//European Conference on Principles of Data Mining and Knowledge Discovery.Berlin:Springer,2003:107-119. [12] SEIFFERT C,KHOSHGOFTAAR T M,VAN HULSE J,et al.RUSBoost:a hybrid approach to alleviating class imbalance[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2009,40(1):185-197. [13] RAYHAN F,AHMED S,MAHBUB A,et al.Cusboost:cluster-based under-sampling with boosting for imbalanced classification[C]//2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS).[S.l.]:IEEE,2017:70-75. [14] AHMED S,MAHBUB A,RAYHAN F,et al.Hybrid methods for class imbalance learning employing bagging with sampling techniques[C]//2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS).[S.l.]:IEEE,2017:126-131. [15] ELYAN E,MORENO-GARCIA C F,JAYNE C.CDSMOTE:class decomposition and synthetic minority class oversampling technique for imbalanced-data classification[J].Neural Computing and Applications,2021,33(7):2839-2851. [16] ESTER M,KRIEGEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Thirteenth National Conference on Artifical Intelligence.[S.l.]:AAAI Press,1996:226-231. [17] HAN H,WANG W Y,MAO B H.Borderline-SMOTE:a new over-sampling method in imbalanced data sets learning[C]//International Conference on Intelligent Computing.Berlin:Springer,2005:878-887. [18] 石洪波,陈雨文,陈 鑫.SMOTE过采样及其改进算法研究综述[J].智能系统学报,2019,14(6):1073-1083. [19] 李艳霞,柴 毅,胡友强,等.不平衡数据分类方法综述[J].控制与决策,2019,34(4):673-688. [20] BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32. [21] 徐玲玲,迟冬祥.面向不平衡数据集的机器学习分类策略[J].计算机工程与应用,2020,56(24):12-27. [22] ALCALÁ-FDEZ J,SANCHEZ L,GARCIA S,et al.KEEL:a software tool to assess evolutionary algorithms for data mining problems[J].Soft Computing,2009,13(3):307-318. [23] HE H,BAI Y,GARCIA E A,et al.ADASYN:adaptive synthetic sampling approach for imbalanced learning[C]//2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).Piscataway:IEEE,2008:1322-1328. [24] AHMED S,RAYHAN F,MAHBUB A,et al.LIUBoost:locality informed under-boosting for imbalanced data classification[M].Emerging Technologies in Data Mining and Information Security.Singapore:Springer,2019:133-144. [25] 罗计根,杜建强,聂 斌,等.一种聚类欠采样策略的随机森林优化方法[J].计算机工程与应用,2020,56(22):166-172. [26] 张家伟,郭林明,杨晓梅.针对不平衡数据的过采样和随机森林改进算法[J].计算机工程与应用,2020,56(11):39-45. |