[1] WAN S,QI L,XU X,et al.Deep learning models for real-time human activity recognition with smartphones [J].Mobile Networks and Applications,2020,25(2):743-755. [2] 王爱丽,薛 冬,吴海滨,等.基于条件生成对抗网络的手写数字识别 [J].液晶与显示,2020,35(12):1284-1290. [3] 张 乐.基于LSTM的智能手机运动轨迹识别研究 [D].兰州:兰州理工大学,2018. [4] AMEUR S,KHALIFA A B,BOUHLEL M S.A novel hybrid bidirectional unidirectional LSTM network for dynamic hand gesture recognition with leap motion [J].Entertainment Computing,2020,35:100373. [5] 李相泽,蒲宝明,杨东升,等.基于手机内置多传感器的瞬时心率估计 [J].哈尔滨工程大学学报,2018,39(4):730-735. [6] WANG J S,CHUANG F C.An accelerometer-based digital pen with a trajectory recognition algorithm for handwritten digit and gesture recognition [J].IEEE Transactions on Industrial Electronics,2011,59(7):2998-3007. [7] DING D,YANG L,CHEN Y C,et al.Handwriting recognition system leveraging vibration signal on smartphones [J].IEEE Transactions on Mobile Computing,2023,22(7):3940-3951. [8] YAO Y,LAI J,LUO C.Automatic handwriting inference via motion sensor embedded wrist-worn device [C]//2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM).Shenzhen:IEEE,2020:364-367. [9] DU T,REN X,LI H.Gesture recognition method based on deep learning [C]//33rd Youth Academic Annual Conference of Chinese Association of Automation(YAC).Nanjing:[s.n.],2018:782-787. [10] PATIL S,KIM D,PARK S,et al.Handwriting recognition in free space using WIMU-based hand motion analysis [J].Journal of Sensors,2016,2(5):1-10. [11] DU H,LI P,ZHOU H,et al.Wordrecorder:accurate acoustic-based handwriting recognition using deep learning [C]//IEEE INFOCOM 2018-IEEE Conference on Computer Communications.Honolula:IEEE,2018:1448-1456. [12] 张 平,刘祚时.基于惯性传感器MPU6050的手势识别方法 [J].传感器与微系统,2018,37(1):46-49. [13] 薛 洋,金连文.一种基于加速度传感器的虚拟手写数字特征提取及识别方法 [J].模式识别与人工智能,2011,24(4):492-500. [14] 刘建伟,宋志妍.循环神经网络研究综述 [J].控制与决策,2022,37(11):2753-2768. [15] BENGIO Y,SIMARD P,FRASCONI P.Learning long-term dependencies with gradient descent is difficult [J].IEEE Transactions on Neural Networks,1994,5(2):157-166. |