[1] WANG Z Y,ZHANG J H.New existence results on periodic solutions of non-autonomous second order Hamiltonian systems [J].Applied Mathematics Letters,2018,79:43-50. [2] MAWHIN J,WILLEM M.Critical point theory and Hamiltonian systems [M].New York:Springer-Verlag,1989. [3] CHANG K C.Infinite dimensional morse theory and multiple solution problems [M].Boston:Birkha¨user,1993. [4] FEI G H.On periodic solutions of superquadratic Hamiltonian systems [J].Electron J Differential Equations,2002,2002(8):1-12. [5] ZHANG Q Y,LIU C G.Infinitely many periodic solutions for second order Hamiltonian systems [J].J Differential Equations,2011,251:816-833. [6] YANG M H,CHEN Y F,XUE Y F.Infinitely many periodic solutions for a class of second-order Hamiltonian systems [J].Acta Math Appl Sin-E,2016,32(1):231-238. [7] TAO Z L,TANG C L.Periodic and subharmonic solutions of second-order Hamiltonian systems [J].J Math Anal Appl,2004,293(2):435-445. [8] YE Y W.On locally superquadratic Hamiltonian systems with periodic potential [J].Boundary Value Problems,2020,2020(1):1-11. [9] LI C,AGARWAL R P,PASCA D.Infinitely many periodic solutions for a class of new superquadratic second-order Hamiltonian systems [J].Applied Mathematics Letters,2017,64:113-118. [10] ZHANG L,TANG X H,CHEN Y.Infinitely many homoclinic solutions for a class of indefinite perturbed second-order Hamiltonian systems [J].Mediterr J Math,2016,13(5):3673-3690. [11] WU D L,TANG C L,WU X P.Existence and nonuniqueness of homoclinic solutions for second-order Hamiltonian systems with mixed nonlinearities [J].Commun Pure Appl Anal,2016,15(1):57-72. |