[1] 徐洲常,王林军,刘 洋,等.采用改进回归型支持向量机的滚动轴承剩余寿命预测方法 [J].西安交通大学学报,2022,56(3):197-205. [2] LIU J,WANG W,MA F,et al.A data-model-fusion prognostic framework for dynamic system state forecasting [J].Engineering Applications of Artificial Intelligence,2012,25(4):814-823. [3] LI N P,LEI Y G,LIN J,et al.An improved exponential model for predicting remaining useful life of rolling element bearings [J].IEEE Transactions on Industrial Electronics,2015,62(12):7762-7773. [4] LIU D T,LUO Y,LIU J,et al.Lithiumion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm [J].Neural Computing and Applications,2014,25(3/4):557-572. [5] WANG Z Q,HU C H,FAN H D.Real-time remaining useful life prediction for a nonlinear degrading system in service:application to bearing data [J].IEEE/ASME Transactions on Mechatronics,2018,23(1):211-222. [6] LEI Y G,LI N P,GONTARZ S,et al.A model-based method for remaining useful life prediction of machinery [J].IEEE Transactions on Reliability,2016,65(3):1314-1326. [7] JIANG Y Y,ZENG W W,SHEN J J,et al.Prediction of remaining useful life of lithium-ion battery based on convex optimization life parameter degradation mechanism model [J].Proceedings of the CSU-EPSA,2019,31:23-28. [8] SI X S,WANG W B,HU C H,et al.Remaining useful life estimation:a review on the statistical data driven approaches [J].European Journal of Operational Research,2011,213(1):1-14. [9] CHEN Y H,PENG G L,ZHU Z Y,et al.A novel deep learning method based on attention mechanism for bearing remaining useful life prediction [J].Applied Soft Computing,2019,86:105919. [10] REN L,SUN Y Q,CUI J,et al.Bearing remaining useful life prediction based on deep autoencoder and deep neural networks [J].Journal of Manufacturing Systems,2018,48:71-77. [11] XIA M,LI T,SHU T X,et al.A two-stage approach for the remaining useful life prediction of bearings using deep neural networks [J].IEEE Transactions on Industrial Informatics,2019,15(6):3703-3711. [12] LI X Q,JIANG H K,XIONG X,et al.Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit network [J].Mechanism and Machine Theory,2019,133:229-249. [13] NAVARIN N,VAN-TRAN D,SPERDUTI A.Universal readout for graph convolutional neural networks [C]//2019International Joint Conference on Neural Networks.New York:IEEE,2019. [14] KHODAYAR M,WANG J H.Spatio-temporal graph deep neural network for short-term wind speed forecasting [J].IEEE Transactions on Sustainable Energy,2018,10(2):670-681. [15] 王庆锋,张 程,卫炳坤,等.基于相对特征的滚动轴承实时健康状态评估方法研究 [J].机电工程,2021,38(9):1099-1106. [16] 胡姚刚,李 辉,廖兴林,等.风电轴承性能退化建模及其实时剩余寿命预测 [J].中国电机工程学报,2016,36(6):1643-1649. [17] MAO W T,HE J L,TANG J M,et al.Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network [J].Advances in Mechanical Engineering,2018,10(12):1-18. [18] NECTOUX P,GOURIVEAU R,MEDJAHER K,et al.Pronostia:an experimental platform for bearings accelerated degradation tests [C]//IEEE International Conference on Prognostics and Health Management.New York:IEEE,2012. [19] 文 娟,高宏力.一种基于UPF的轴承剩余寿命预测方法 [J].振动与冲击,2018,37(24):208-213. [20] LIU X J,SONG P,YANG C,et al.Prognostics and health management of bearings based on logarithmic linear recursive least-squares and recursive maximum likelihood estimation [J].IEEE Transactions on Industrial Electronics,2018,65(2):1549-1558. [21] YOO Y,BEAK J.A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network [J].Applied Sciences,2018,8(7):1102. [22] SAUFI M S R M,HASSAN K A.Remaining useful life prediction using an integrated Laplacian-LSTM network on machinery components [J].Applied Soft Computing,2021,112:107817. [23] WANG B,LEI Y G,LI N P,et al.A hybrid prognostics approach for estimating remaining useful life of rolling element bearings [J].IEEE Transactions on Reliability,2020,69(1):401-412. |