[1] HARDY G H,LITTLEWOOD J E,POLYA G.Inequalities [M].London:Cambridge University Press,1952. [2] 杨必成.关于一个推广的Hardy-Hilbert不等式 [J].数学年刊:A辑,2002,23(2):247-254. [3] 杨必成.关于Hardy-Hilbert不等式的单参数推广 [J].数学的实践与认识,2006,36(4):226-231. [4] 孙保炬.一个推广的具有最佳常数的Hardy-Hilbert不等式 [J].数学进展,2007,36(1):39-46. [5] 刘 琼,李继猛.一个具最佳常数的多参数Hardy-Hilbert不等式 [J].数学杂志,2010,30(5):877-882. [6] YANG B C,DEBNATH L.On the extended Hardy-Hilbert’s inequality [J].Journal of Mathematical Analysis and Applications,2002,272:187-199. [7] 有名辉.离散型 Hilbert不等式的推广及应用 [J].武汉大学学报(理学版),2021,67(2):179-184. [8] YANG B C,DEBNATH L.On a new generalization of Hardy-Hilbert’s inequality and its applications [J].Journal of Mathematical Analysis and Applications,1999,133:484-497. [9] KUANG J C,DEBNATH L.On new generalizations of Hilbert’s inequality and their applications [J].Journal of Mathematical Analysis and Applications,2002,245:248-265. [10] CHEN Z,XU J.New extensions of Hardy-Hilbert’s inequality with multiple parameters [J].Acta Mathematica Hungarica,2007,117(4):383-400. [11] YOU M H.On a new discrete Hilbert-type inequality and its application [J].Mathematical Inequalities and Applications,2015,18(4):1575-1587. [12] 杨必成.一个新的零齐次核的Hilbert型积分不等式 [J].浙江大学学报(理学版),2012,39(4):390-392. [13] 有名辉.一个与Euler数有关的Hilbert型不等式的推广 [J].浙江大学学报(理学版),2016,43(2):144-148. [14] KRNIC M,PECARIC J,PERIC I,et al.Recent advances in Hilbert-type inequalities [M].Zagreb:Element Press,2012. [15] RASSIAS M T,YANG B C.A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta function [J].Journal of Mathematical Analysis and Applications,2015,428(2):1286-1308. [16] 洪 勇.一类具有准齐次核的涉及多个函数的Hilbert型积分不等式 [J].数学学报,2014,57(3):833-840. [17] 菲赫金哥尔茨 Γ M.微积分学教程(第2卷) [M].徐献瑜,冷生明,梁文琪,译.北京:高等教育出版社,2006. |