[1] 黄南天,杨学航,蔡国伟,等.采用非平衡小样本数据的风机主轴承故障深度对抗诊断 [J].中国电机工程学报,2020,40(2):563-574. [2] TONG Q J,HU J Z.Bearing performance degradation assessment based on information-theoretic metric learning and fuzzy C-means clustering [J].Measurement Science and Technology,2020,31(7):075001. [3] 曾 军,陈艳峰,杨 苹,等.大型风力发电机组故障诊断综述 [J].电网技术,2018,42(3):849-860. [4] 汪千程,苏 春,文泽军.基于协整分析的风力机多工况监测与故障诊断 [J].中国机械工程,2022,33(13):1596-1603. [5] 张 俊,张建群,钟 敏,等.基于PSO-VMD-MCKD方法的风机轴承微弱故障诊断 [J].振动.测试与诊断,2020,40(2):287-296. [6] 齐咏生,张二宁,高胜利,等.基于EEMD-KECA的风电机组滚动轴承故障诊断 [J].太阳能学报,2017,38(7):1943-1951. [7] 李 华,伍 星,刘 韬,等.基于信息熵优化变分模态分解的滚动轴承故障特征提取 [J].振动与冲击,2018,37(23):219-225. [8] LIN S L.Intelligent fault diagnosis and forecast of time-varying bearing based on deep learning VMD-DenseNet [J].Sensors,2021,21(22):21227467. [9] 龙霞飞,杨 苹,郭红霞,等.大型风力发电机组故障诊断方法综述 [J].电网技术,2017,41(11):3480-3491. [10] LIU C,CHENG G,CHEN X H,et al.Planetary gears feature extraction and fault diagnosis method based on VMD and CNN [J].Sensors,2018,18(5):18051523. [11] DING J K,XIAO D M,LI X J.Gear fault diagnosis based on genetic mutation particle swarm optimization VMD and probabilistic neural network algorithm [J].IEEE Access,2020,8: 18456-18474. [12] ZHANG Y,WANG A C.Research on the fault diagnosis method for rolling bearings based on improved VMD and automatic IMF acquisition [J].Shock and Vibration,2020,2020: 1-19. [13] LI X,MA Z Q,KANG D,et al.Fault diagnosis for rolling bearing based on VMD-FRFT [J].Measurement,2020,155: 107554. [14] 王 波,王志乐,熊鑫州,等.一种改进的MRVM方法及其在风电机组轴承诊断中的应用 [J].太阳能学报,2021,42(1):215-221. [15] 崔兆亿,耿秀丽.基于RF和量子粒子群优化的SVM算法 [J/OL].计算机集成制造系统,(2021-9-13)[2021-11-23].http://kns.cnki.net/kcms/detail/11.5946.TP.20210910.1824.008.html. [16] 黄新波,马玉涛,朱永灿.基于信息融合和M-RVM的变压器故障诊断方法 [J].电力自动化设备,2020,40(12):218-225. [17] DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition [J].IEEE transactions on signal processing,2014,62(3):531-544. [18] DHIMAN G,KAUR A.STOA:a bio-inspired based optimization algorithm for industrial engineering problems [J].Engineering Applications of Artificial Intelligence,2019,82: 148-174. [19] SHEEN Y T.A complex filter for vibration signal demodulation in bearing defect diagnosis [J].Journal of Sound and Vibration,2004,276(1/2):105-119. [20] 赵洪山,李 浪.基于最大相关峭度解卷积和变分模态分解的风电机组轴承故障诊断方法 [J].太阳能学报,2018,39(2):350-358. [21] 单增海,李志远,张 旭,等.基于多传感器信息融合和多粒度级联森林模型的液压泵健康状态评估 [J].中国机械工程,2021,32(19):2374-2382. [22] 刘建昌,权 贺,于 霞,等.基于参数优化VMD和样本熵的滚动轴承故障诊断 [J].自动化学报,2022,48(3):808-819. |