[1] 钱 政,裴 岩,曹丽宵,等.风电功率预测方法综述[J].高电压技术,2016,42(4):1047-1060. [2] 杨 茂,张罗宾.基于数据驱动的超短期风电功率预测综述[J].电力系统保护与控制,2019,47(13):171-186. [3] 张振华,马 超,徐瑾辉,等.EMD与NARX神经网络的风电场总功率组合预测[J].计算机工程与应用,2016,52(12): 1408-0018. [4] AHMED A,KHALID M.A review on the selected applications of forecasting models in renewable power systems[J].Renewable and Sustainable Energy Reviews,2019,100:9-21. [5] 赵 倩,黄景涛.基于EMD-SA-SVR的超短期风电功率预测研究[J].电力系统保护与控制,2020,48(4):89-96. [6] 乔 颖,鲁宗相,闵 勇.提高风电功率预测精度的方法[J].电网技术,2017,41(10):3261-3269. [7] 李郅琴,杜建强,聂 斌,等.特征选择方法综述[J].计算机工程与应用,2019,55(24):10-19. [8] QIN L,XIONG Y,LIU K.Weather division-based wind power forecasting model with feature selection[J].IET Renewable Power Generation,2019,13(16):3050-3060. [9] 刘 芳,汪 震,刘睿迪,等.基于组合损失函数的BP神经网络风力发电短期预测方法[J].浙江大学学报(工学版),2021,55(3):594-600. [10] GUO Z H,CHI D Z,WU J,et al.A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm[J].Energy Conversion and Management,2014,84:140-151. [11] 郭晓利,温延立.基于随机森林的风机状态检测数据可视化研究[J].电测与仪表,2016,53(22):12-15. [12] 刘 勇,孙东红,陈 友,等.基于主成分分析和决策树的入侵检测方法[J].东北大学学报(自然科学版),2010,31(7):933-937. [13] 韩 敏,任伟杰,许美玲.一种基于L1范数正则化的回声状态网络[J].自动化学报,2014,40(11):2428-2435. [14] 曹 晋,张 莉,李凡长,等.一种基于支持向量数据描述的特征选择算法[J].智能系统学报,2015,10(2):215-220. [15] VERONICA B C,AMPARO A B.Ensembles for feature selection:a review and future trends[J].Information Fusion,2019,52:1-12. [16] 黄 慧,贾 嵘,师小雨,等.考虑机组动态特性的超短期风电功率预测及不确定性量化分析[J].电力系统保护与控制,2021,49(8):109-117. [17] LYDIA M,KUMAR S,KUMAR G E R.A comprehensive review on wind turbine power curve modeling techniques[J].Renewable & Sustainable Energy Reviews,2014,30:452-460. [18] OLAOFE Z O,FOLLY K A.Wind energy analysis based on turbine and developed site power curves:a case-study of darling city[J].IET Renewable Energy,2013,53:306-318. [19] 杨 茂,翟冠强.基于决策树理论的风电功率实时预测方法[J].电测与仪表,2018,55(11):120-124. [20] 吴辰文,梁靖涵,王 伟,等.基于递归特征消除方法的随机森林算法[J].统计与决策,2017,33(21):60-63. |