[1] 张神林.基于卷积神经网络的滚动轴承及行星齿轮箱故障诊断方法 [D].马鞍山:安徽工业大学,2018. [2] 邵海东,肖一鸣,颜 深.仿真数据驱动的改进无监督域适应轴承故障诊断 [J].机械工程学报,2023(3):76-85. [3] 赵小强,郭海科.多特征融合的滚动轴承故障诊断 [J].农业工程学报,2023,39(13):80-88. [4] OJAGHI M,YAZDANDOOST N.Oil-whirl fault modeling,simulation,and detection in sleeve bearings of squirrel cage induction motors [J].IEEE Transactions on Energy Conversion,2015,30(4):1537-1545. [5] JIA F,LEI Y G,LIN J,et al.Deep neural networks:a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data [J].Mechanical Systems and Signal Processing,2016,72/73: 303-315. [6] 邓飞跃,强亚文,杨绍普,等.一种自适应频率窗经验小波变换的滚动轴承故障诊断方法 [J].西安交通大学学报,2018,52(8):22-29. [7] 徐 可,陈宗海,张陈斌,等.基于经验模态分解和支持向量机的滚动轴承故障诊断 [J].控制理论与应用,2019,36(6):915-922. [8] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks [J].Science,2006,313(5786):504-507. [9] JIANG G Q,HE H B,YAN J,et al.Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox [J].IEEE Transactions on Industrial Electronics,2018,66(4):3196-3207. [10] JIA F,LEI Y G,LU N,et al.Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization [J].Mechanical Systems and Signal Processing,2018,110:349-367. [11] WANG S H,XIANG J W.A minimum entropy deconvolution-enhanced convolutional neural networks for fault diagnosis of axial piston pumps [J].Soft Computing,2020,24:2983-2997. [12] 陈仁祥,黄 鑫,杨黎霞,等.基于卷积神经网络和离散小波变换的滚动轴承故障诊断 [J].振动工程学报,2018,31(5):883-891. [13] 车畅畅,王华伟,倪晓梅,等.基于深度残差收缩网络的滚动轴承故障诊断 [J].北京航空航天大学学报,2021,47(7):1399-1406. [14] 曲建岭,余 路,袁 涛,等.基于卷积神经网络的层级化智能故障诊断算法 [J].控制与决策,2019,34(12):2619-2626. [15] 肖 雄,王健翔,张勇军,等.一种用于轴承故障诊断的二维卷积神经网络优化方法 [J].中国电机工程学报,2019,39(15):4558-4568. [16] 陈志刚,杜小磊,张 楠,等.IEWT-CS和LCNN在轴承故障诊断中的应用 [J].哈尔滨工程大学学报,2020,41(3):463-472. [17] 于 洋,马 军,王晓东,等.基于GST与改进CNN的滚动轴承智能故障诊断 [J].铁道科学与工程学报,2022,19(7):2050-2060. [18] YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions [C]//ICLR 2016.Ithaca,NY:arXiv.org,2016. [19] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2015. [20] ZHAO M H,ZHONG S S,FU X Y,et al.Deep residual networks with adaptively parametric rectifier linear units for fault diagnosis [J].IEEE Transactions on Industrial Electronics,2021,68(3):2587-2597. [21] HE K M,ZHANG X Y,REN S Q,et al.Delving deep into rectifiers:surpassing human-level performance on imagenet classification [C]//Proceedings of the IEEE International Conference on Computer Vision. [S.l.]:IEEE,2015. [22] 卞景艺,刘秀丽,徐小力,等.基于多尺度深度卷积神经网络的故障诊断方法 [J].振动与冲击,2021,40(18):204-211. [23] 赵小强,梁浩鹏.使用改进残差神经网络的滚动轴承变工况故障诊断方法 [J].西安交通大学学报,2020,54(9):23-31. |