兰州理工大学学报 ›› 2025, Vol. 51 ›› Issue (4): 43-50.

• 机械工程与动力工程 • 上一篇    下一篇

基于改进樽海鞘群算法的无人机山区巡航

谢小正*, 杜敏, 张子健, 赵维吉   

  1. 兰州理工大学 机电工程学院, 甘肃 兰州 730050
  • 收稿日期:2023-04-15 出版日期:2025-08-28 发布日期:2025-09-05
  • 通讯作者: 谢小正(1979-),男,甘肃甘谷人,博士,研究员.Email:x2zdavy@126.com
  • 基金资助:
    国家自然科学基金(51565030)

UAV mountain cruising based on an improved salp swarm algorithm

XIE Xiao-zheng, DU Min, ZHANG Zi-jian, ZHAO Wei-ji   

  1. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2023-04-15 Online:2025-08-28 Published:2025-09-05

摘要: 针对樽海鞘群算法搜索精度低、收敛速度慢和寻优稳定性差等缺陷,提出了基于混沌映射的自适应惯性权重樽海鞘群算法.首先,在初始化阶段采用Tent混沌映射种群,使搜索空间分布更均匀;然后,在领导者位置添加Logistic混沌,在追随者位置引入自适应惯性权重,从而增强种群的多样性;最后,对食物源进行Gauss变异操作,使算法跳出局部最优,提升搜索精度.针对改进的樽海鞘群算法进行收敛曲线分析、函数测试结果对比和算法排名评估.结果表明,基于混沌映射的自适应惯性权重樽海鞘群算法搜索精度更高、收敛速度更快、寻优能力更强且稳定性更佳.在复杂山区巡航规划最优路径的仿真实验表明,与樽海鞘群算法相比,改进算法规划质量更高、路径更短且求解更稳定,更适用于山区环境中无人机的路径规划.

关键词: 樽海鞘群算法, 混沌映射, 自适应惯性权重, 路径规划, 无人机

Abstract: Aiming at the shortcomings of the salp swarm algorithm, such as low search accuracy, slow convergence speed, and poor stability of optimization, an adaptive inertia weight salp swarm algorithm based on chaotic mapping is proposed. First, Tent chaotic mapping populations are used in the initialization phase to make the search space more uniformly distributed. Then, logistic chaos is added to the leader position, while adaptive inertia weights are introduced to the follower positions, thus enhancing the diversity of the population. Finally, the food source is operated by Gaussian variation, which makes the algorithm jump out of the local optimum and improves the search accuracy. The improved salp swarm algorithm is evaluated through convergence curve analysis, function test results comparison, and algorithm ranking evaluation. The results show that the adaptive inertial weights salp swarm algorithm based on chaotic mapping has higher search accuracy, faster convergence, better optimization ability, and higher stability. In simulation experiments on planning optimal paths for cruising in complex mountainous areas, the improved algorithm outperforms thesalp swarm algorithm in terms of planning quality, path length, and solution stability, indicating its superior applicability for unmanned aerial vehicles path planning in mountainous environments.

Key words: salp swarm algorithm, chaotic map, adaptive inertia weights, path planning, UAV

中图分类号: