[1] SCHAFFER J,HUYNH B,O’DONOVAN J,et al.An analysis of student behavior in two massive open online courses [C]//IEEE/ACM International Conference on Advances in Social Networks Analysis & Mining.[S.l.]:IEEE,2016:380-385. [2] 罗智霞,安景文,吴竹南.基于神经网络的社交网络用户动机与行为关系研究 [J].科技导报,2018,36(8):31-39. [3] 杨 箭.基于用户行为与内容综合分析评估的视频推荐方法研究 [J].电子技术与软件工程,2016(13):107-108. [4] 王 刚,郭雪梅.社交网络环境下基于用户行为分析的个性化推荐服务研究 [J].情报理论与实践,2018,41(8):102-107. [5] ZHANG Ruijuan,CHEN Jing,ZHANG Mingchuan,et al.User abnormal behavior analysis based on neural network clustering [J].Journal of China Universities of Posts and Telecommunications,2016,23(3):44-36. [6] WANG Yu,SHANG Jin,WU Xiaofang,et al.Personalized recommendation method based on user behavior analysis [C]//2nd International Conference on Automation,Mechanical Control and Computational Engineering.Beijing:[s.n.],2017:802-809. [7] 李 鹏,于晓洋,孙渤禹.基于用户群组行为分析的视频推荐方法研究 [J].电子信息学报,2014,36(6):1485-1491. [8] 蒋卓轩,张 岩,李晓明.基于MOOC数据的学习行为分析与预测 [J].计算机研究与发展,2015,52(3):614-628. [9] 王 东,林 宏,左 欣.基于在线视频学习的用户观看行为抽取方法 [J].四川理工学院学报(自然科学版),2015,28(6):20-24. [10] 展 渊,王 宇.基于用户行为分析的视频推荐算法研究 [J].电子测量技术,2017,40(4):39-42. [11] 吴 柳.基于R语言的视频网站用户在线行为分析 [J].电脑知识与技术,2017,13(11):187-190. [12] 高 睿.基于深度神经网络的视频个性化推荐系统研究 [D].深圳:深圳大学,2017. [13] WANG J A,MA X H,WEN X Y.Less conservative stability criteria for neural networks with interval time-varying delay based on delay-partitioning approach [J].Neurocomputing,2015,155:146-152. [14] SONG K K,YAO T,LING Q,et al.Boosting image sentiment analysis with visual attention [J].Neurocomputing,2018,312:218-228. [15] TOMINAGA T,HAYASHI T,OKAMOTO J,et al.Performance comparisons of subjective quality assessment methods for mobile video [C]//Second International Workshop on Quality of Multimedia Experience.[S.l.]:IEEE,2010. [16] ZHANG Z,MA C,ZHU R.Self tuning fully-connected PID neural network system for distributed temperature sensing and control of instrument with multi-modules [J].Sensors,2016,16(10):1709-1721. [17] 赵 宏,郭万鹏.深度神经网络代价函数选择与性能评测研究 [J].软件,2018(1):14-20. [18] ABADI M,BARHAM P,CHEN J,et al.Tensor flow:A system for large-scale machine learning [C]//Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation.Berkeley:USENIX Association,2016:265-283. [19] 李英壮,高 拓,李先毅.基于云计算的视频推荐系统的设计 [J].通信学报,2013(增刊2):138-140. |