[1] PODLUBNY I.Fractional differential equations [M].San Diego:Academic Press,1999. [2] MATSUMOTO T,CHUA L,KOBAYSHI K.Laboratory experiment and numerical confirmation [J].IEEE Trans Circuits Syst,1986,33(11):1143-1147. [3] 王 划,盛潇澍,昝 鹏.基于一种新的混沌系统的动态分析和图像显示 [J].电测与仪表,2017,54(3):67-71. [4] 郑广超,刘崇新,王 琰.一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步 [J].物理学报,2018 (5):43-50. [5] JIANG P,WANG B,BU S,et al.Hyperchaotic synchronization in deterministic small-world dynamical networks [J].Int J Mod Phys B,2004,18:2674-2681. [6] 高子林,王银河.一类不确定混沌系统的自适应模糊同步控制 [J].复杂系统与复杂性科学,2017,4:1-9. [7] 邵克勇,韩 峰,郭浩轩.一类分数阶超混沌系统的自适应有限时间控制 [J].吉林大学学报(信息科学版),2018(1):24-30. [8] LI T,WANG Y,YANG Y.Designing synchronization schemes for fractional-order chaotic system via a single state fractional-order controller [J].Optik-International Journal for Light and Electron Optics,2014,125(22):6700-6705. [9] WANG Y,LI T.Stability analysis of fractional-order nonlinear systems with delay [J].Mathematic Problems in Engineering,2014,125(22):6700-6705. [10] CANNAS B,CINCOTTI S.Hyperchaotic behaviour of two bi-directionally coupled Chua's circuits [J].Int J Circuit Th Appl,2002,30(6):625-637. [11] KAPTIANIAK T,CHUA L.Hyperchaotic attractors of unidirectionally coupled Chua's CircuitsInt [J].J Bifur Chaos,1994,4(2):477-482. [12] WU X,GUAN Z,WU Z.Adaptive synchronization between two different hyperchaotic systems [J].Nonlinear Analysis,2008,68:1346-1351. [13] WANG X,WANG M.A hyperchaos generated from Lorenz system [J].Physica A,2008,68(5):1346-1351. [14] ROSSLER O.An equation for hyperchaos [J].Phys Lett A,1979,71(2):155-157. [15] JIN Y,CHI C,AN P,et al.Controlling hyperchaos of the Rssler system [J].Int J Cont,1999,72(10):882-886. [16] CHEN A,LU J,YU S.Generating hyperchaotic L attractor via state feedback control [J].Physica A,2006,364:103-110. [17] LI Y,TANG W,CHEN G.Generating hyperchaos via state feedback control [J].Internat J Bifur Chaos,2005,15(10):3367-3375. [18] ZHENG S,DONG G,BI Q.A new hyperchaotic system and its synchronization [J].Applied Mathematics and Computation,2010,215(9):3192-3200. [19] GRASSI G,MASCOLO S.A systematic procedure for synchronizing hyperchaos via observer design [J].J Circuits Syst Comput,2002,11(1):1-16. [20] HAO B.Elementary symbolic dynamics and chaos in dissipative systems [M].Singapore:World Scientific,1989. [21] 张一帆,张志明,李天增.一个新的分数阶超混沌系统的同步 [J].兰州理工大学学报,2016,42(2):154-158. [22] 张志明,张一帆,王 瑜.基于分数阶控制器的分数阶混沌系统同步 [J].兰州理工大学学报,2016,42(4):158-164. |