[1] RIECKER M,BIEDERMANN S,EL BANSARKHANI R,et al.Lightweight energy consumption-based intrusion detection system for wireless sensor networks [J].International Journal of Information Security,2015,14(2):155-167. [2] OSANAIYE O A,ALFA A S,HANCKE G P.Denial of service defence for resource availability in wireless sensor networks [J].IEEE Access,2018,6:6975-7004. [3] MOHEMED R E,SALEH A I,ABDELRAZZAK M,et al.Energy-efficient routing protocols for solving energy hole problem in wireless sensor networks [J].Computer Networks,2017,114:51-66. [4] SICARI S,RIZZARDI A,GRIECO L A,et al.Security,privacy and trust in internet of things [J].Computer Networks,2015,76(C):146-164. [5] BUTUN I,MORGERA S D,SANKAR R.A survey of intrusion detection systems in wireless sensor networks [J].IEEE Communications Surveys & Tutorials,2014,16(1):266-282. [6] GHOSAL A,HALDER S.A survey on energy efficient intrusion detection in wireless sensor networks [J].Journal of Ambient Intelligence & Smart Environments,2017,9(2):239-261. [7] MAJJED A Q,YU L,MOHAMMED A,et al.Deep learning approach combining sparse autoencoder with SVM for network intrusion detection [J].IEEE Access,2018,6:2169-3536. [8] WU K,CHEN Z,LI W.A novel intrusion detection model for a massive network using convolutional neural networks [J].IEEE Access,2018,6:50850-50859. [9] 钱铁云,王 毅,张明明,等. 基于深度神经网络的入侵检测方法 [J].华中科技大学学报(自然科学版),2018,46(1):6-10. [10] YIN Chuanlong,ZHU Yuefei,FEI Jinlong,et al.A deep learning approach for intrusion detection using recurrent neural networks [J].IEEE Access,2017,5:21954-21961. [11] FARNAAZ N,JABBAR M A.Random forest modeling for network intrusion detection system [J].Procedia Computer Science,2016,89:213-217. [12] DESHMUKH D H,GHORPADE T,PADIYA P.Intrusion detection system by improved preprocessing methods andNave Bayes classifier using NSL-KDD 99 dataset [C]//Electronics and Communication Systems (ICECS),2014 International Conference on.[S.l.]:IEEE,2014:1-7. [13] EESA A S,ORMAN Z,BRIFCANI A M A.A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems [J].Expert Systems with Applications,2015,42(5):2670-2679. [14] CHOWDHURY M M U,HAMMOND F,KONOWICZ G,et al.A few-shot deep learning approach for improved intrusion detection [C]//Ubiquitous Computing,Electronics and Mobile Communication Conference (UEMCON),2017 IEEE 8th Annual.[S.l.]:IEEE,2017:456-462. [15] GUNASEKARAN M,SUBATHRA P.GA-DoSLD:genetic algorithm based denial-of-sleep attack detection in WSN [J].Security and Communication Networks,2017(1):1-10. [16] 高 妮,高 岭,贺毅岳,等. 基于自编码网络特征降维的轻量级入侵检测模型 [J].电子学报,2017,45(3):730-739. [17] ALRAJEH N A,KHAN S,MAURI J L,et al.Artificial neural network based detection of energy exhaustion attacks in wireless sensor networks capable of energy harvesting [J].Ad Hoc & Sensor Wireless Networks,2014,22(1/2):109-133. [18] AHMAD I,BASHERI M,IQBAL M J,et al.Performance comparison of support vector machine,random forest,and extreme learning machine for intrusion detection [J].IEEE Access,2018,6:33789-33795. [19] ZHOU Z H,FENG J.Deep forest:Towards an alternative to deep neural networks [C]//Twenty-six International Joint Conference on Artificial Intelligence.Melbourne,Australia:[s.n.],2017:1-7. [20] AIMOMANI I,AL-KASASBEH B,AL-AKHRAS M.WSN-DS:a dataset for intrusion detection systems in wireless sensor networks [J].Journal of Sensors,2016(2):1-16. [21] REVATHI S,MALATHI A.A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection [J].International Journal of Engineering Research and Technology,2013,2(12):1848-1853. [22] SUN Z,XU Y,LIANG G,et al.An intrusion detection model for wireless sensor networks with an improved V-detector algorithm [J].IEEE Sensors Journal,2018,18(5):1971-1984. [23] GHANEM K,APARICIO-NAVARRO F J,KYRIAKOPOULOS K G,et al.Support vector machine for network intrusion and cyber-attack detection [C]//2017 Sensor Signal Processing for Defence Conference (SSPD).[S.l.]:IEEE,2017:1-5. |