[1] LI Y,XU M,WANG R,et al.A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy[J].Journal of Sound and Vibration,2016,360:277-299. [2] PARK C S,CHOI Y C,KIM Y H.Early fault detection in automotive ball bearings using the minimum variance cepstrum[J].Mechanical Systems & Signal Processing,2013,38(2):534-548. [3] 李舜酩,郭海东,李殿荣.振动信号处理方法综述[J].仪器仪表学报,2013,34(8):1907-1915. [4] FENG Z,LIANG M,CHU F.Recent advances in time-frequency analysis methods for machinery fault diagnosis:A review with application examples[J].Mechanical Systems & Signal Processing,2013,38(1):165-205. [5] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings A,1998,454(1971):903-995. [6] XU Guanlei,WANG Xiaotong,Xu Xiaogang,et al.Improved EMD for the analysis of FM signals[J].Mechanical Systems and Signal Processing,2012,33:181-196. [7] WU Zhaohua,HUANG N E.Ensemble empirical mode decomposition:a noise-assisted data analysis method [J].Advances in Adaptive Data Analysis,2008,1(1):1-41. [8] DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing,2014,62(3):531-544. [9] 唐贵基,王晓龙.变分模态分解方法及其在滚动轴承早期故障诊断中的应用[J].振动工程学报,2016,29(4):638-648. [10] 向 丹,岑 健.基于EMD熵特征融合的滚动轴承故障诊断方法[J].航空动力学报,2015,30(5):1149-1155. [11] 陈东宁,张运东,姚 成,等.基于变分模态分解和多尺度排列熵的故障诊断[J].计算机集成制造系统,2017,23(12):2604-2612. [12] 郑近德,代俊习,朱小龙,等.基于改进多尺度模糊熵的滚动轴承故障诊断方法[J].振动、测试与诊断,2018,38(5):929-934. [13] BANDT C,POMPE B.Permutation entropy:a natural complexity measure for time series[J].Physical Review Letters,2002,88(17):174102. [14] AZIZ W,ARIF M.Multiscale permutation entropy of physiological time series[C]//9thInternational Multitopic Conference.[S.l.]:IEEE,2005:1-6. [15] 刘 涛,马转霞,杜 楠.多尺度排列熵在涡旋压缩机故障诊断中的应用[J].兰州理工大学学报,2018,44(1):42-46. [16] SUN W,CHEN J,LI J.Decision tree and PCA-based fault diagnosis of rotating machinery[J].Noise & Vibration Worldwide,2007,21(3):1300-1317. [17] 欧 璐,于德介.基于监督拉普拉斯分值和主元分析的滚动轴承故障诊断[J].机械工程学报,2014,50(5):88-94. [18] LI Meng.The application of PCA and SVM in rolling bearing fault diagnosis[J].Advanced Materials Research,2012,430-432:1163-1166. [19] JIA G,YUAN S,TANG C.Fault diagnosis of roller bearing based on PCA and multi-class support vectormachine[J].Ifip Advances in Information & Communication Technology,2010,347:198-205. [20] SCHMÖLKOPF B,SMOLA A J,MÜLER K R.Kernel principal component analysis[C]//International Conference on Artificial Neural Networks.Berlin,Heidelberg:Springer,1999:327-352. [21] JIANG L L,DENG Z Q,TANG S W.KPCA denoising and its application in machinery fault diagnosis[J].Applied Mechanics and Materials,2011,103:274-278. [22] ZHANG Y,ZUO H,BAI F.Classification of fault location and performance degradation of a roller bearing[J].Measurement,2013,46(3):1178-1189. [23] 王长林,陈鸿宝,林 玮,等.SVM模式识别技术及在机械故障诊断中的应用进展[J].桂林电子科技大学学报,2009,29(3):256-259. [24] TIPPING M E.The relevance vector machine[J].Advances in Neural Information Processing Systems,1999,12(3):652-658. [25] PSORAKIS I,DAMOULAS T,GIROLAMI M A.Multiclass relevance vector machines:sparsity and accuracy[J].IEEE Transactions on Neural Networks,2010,21(10):1588-1598. [26] Case Western Reserve University.Bearing data center[DB/OL].[2019-05-20].http://csegroups.case.edu/bearingdatacenter/pages/download-data-file. [27] 郑近德,程军圣,杨 宇.多尺度排列熵及其在滚动轴承故障诊断中的应用[J].中国机械工程,2013,24(19):2641-2645. [28] 郑小霞,周国旺,任浩翰,等.基于变分模态分解和排列熵的滚动轴承故障诊断[J].振动与冲击,2017(22):22-28. [29] ZHAO L Y,WANG Lei,YAN R Q.Rolling bearing fault diagnosis based on wavelet packet decomposition and multi-scale permutation entropy[J].Entropy,2015,17(12):6447-6461. |