[1] 李文可,凌振宝,王君,等.一种石墨电极缺损音频检测系统设计[J].中国测试,2016,42(4):86-88. [2] 李平,于立群,李婉秋.炭制品的均质质量与超声波声速检测[J].炭素,2002(2):41-43. [3] WANG Y,SUN Y,LV P,et al.Detection of line weld defects based on multiple thresholds and support vector machine[J].NDT&E Int,2008,41(7):517-524. [4] 周贤,刘义伦,李学军.炭素制品X射线图像缺陷的自动提取与分割[J].计算机应用,2006,26(5):1214-1216. [5] 唐圣学. X射线底片图像处理系统 [D].长沙:湖南大学,2004. [6] 刘辉,万文,熊震字.X射线焊缝图像的缺陷检测与识别技术[J].电焊机,2017,47(4):89-93. [7] 禹晶,孙卫东,肖创柏.数字图像处理 [M].北京:机械工业出版社,2015:72-75. [8] KALRA A,CHHOKAR R L.A hybrid approach using sobel and canny operator for digital image edge detection[C]//International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE).IEEE,India:IEEE,2016:305-310. [9] 陈顺,李登峰.融合Canny算子和形态学的齿轮图像边缘检测研究[J].机电工程,2020,37(7):821-825. [10] XU J,WANG H S,HUANG H.Research of adaptive threshold edge detection algorithm based on statistics canny operator[C]//Ninth International Symposium on Multispectral Image Processing and Pattern Recognition(MIPPR).[S.l.]:SPIE,2015. [11] 卞桂平,秦益霖.基于Canny算法的自适应边缘检测方法[J].电子设计工程,2017,25(10):53-56. [12] 李丹丹,侯涛,魏世鹏.基于改进Canny算子的铁轨边缘检测算法[J].电视技术,2015,39(8):55-58. [13] 杨帆. 数字图像处理与分析 [M].2版.北京:北京航空航天大学出版社,2010:240-243. [14] 雷芳,熊建斌,柯文德.基于图像特征提取的管道X射线底片缺陷识别[J].广东石油化工学院学报,2016,26(6):24-27. [15] 仲晓庆,蔡朝晖.基于MATLAB的几个图像处理实例[J].信息系统工程,2018(12):96-98. [16] YE D,HONG G S,ZHANG Y,et al.Defect detection in selective laser melting technology by acoustic signals with deep belief networks[J].The International Journal of Advanced Manufacturing Technology,2018,96(1):2791-2801. [17] CHEN Z,DENG S,CHEN X,et al.Deep neural networks-based rolling bearing fault diagnosis[J].Microelectronics Reliability,2017,75(8):327-333. [18] 张艳霞. 基于受限玻尔兹曼机的深度学习模型及其应用 [D].成都:电子科技大学,2016. |