[1] 黄义,何芳社.弹性地基上的梁、板、壳 [M].北京:科学出版社,2005. [2] 袁鸿,李善倾,刘人怀.Pasternak地基上简支板振动问题的准格林函数方法[J].应用数学和力学,2007,28(7):757-762. [3] 盛宏玉,高荣誉.一种改进的Pasternak地基模型及层合地基板的解析解[J].土木工程学报,2006,39(1):87-91. [4] 刘小文,沈细中,刘祖德.复合地基上板的变形分析[J].人民长江,2004,35(2):39-40. [5] 马涛,赵忠民,刘良祥,等.功能梯度材料的研究进展及应用前景[J].化工科技,2012,20(1):71-75. [6] REDDY J N,CHIN C D.Thermomechanical analysis of functionally graded cylinders and plates[J].Journal of Thermal Stresses,1998,21:593-626. [7] 蒲育,赵海英,滕兆春.四边弹性约束FGM矩形板面内自由振动的DQM求解[J].振动与冲击,2016,35(17):58-65. [8] LATIFI M,FARHATNIA F,KADKHODAEI M.Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion[J].European Journal of Mechanics-A/Solids,2013,41:16-27. [9] NA K S,KIM J H.Three-dimensional thermomechanical buckling analysis for functionally graded composite plates[J].Composite Structures,2006,73(4):413-422. [10] GUPTA A,TALHA M,SEEMANN W.Free vibration and flexural response of functionally graded plates resting on Winkler-Pasternak elastic foundations using nonpolynomial higher-order shear and normal deformation theory[J].Mechanics of Advanced Materials and Structures,2018,25(6):523-532. [11] 周凤玺,李世荣.功能梯度材料矩形板的三维瞬态热弹性分析[J].工程力学,2009,26(8):59-64. [12] LIANG X,WANG Z,WANG L,et al.Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation[J].Journal of Sound and Vibration,2014,333(12):2649-2663. [13] 滕兆春,丁树声,郑鹏君.弹性地基上变厚度矩形板自由振动的GDQ法求解[J].应用力学学报,2014,31(2):236-241. [14] 刘丽威. 弹性地基上功能梯度梁、板的动力学特性分析 [D].南京:南京航空航天大学,2012. [15] 王小岗,赵以弘.Winkler地基上变厚度自由矩形板固有频率的Galerkin解法[J].青海大学学报(自然科学版),2001,19(2):4-6. [16] 滕兆春,衡亚洲,崔盼,等.变刚度Winkler地基上受压非均质矩形板的自由振动与屈曲特性[J].振动与冲击,2019,38(3):258-266. [17] 赵家奎. 微分变换及其在电路中的应用 [M].武汉:华中理工大学出版社,1988. [18] 滕兆春,刘露,衡亚洲.非均匀Winkler-Pasternak 弹性地基上正交各向异性矩形板自由振动的DTM分析[J].兰州理工大学学报,2018,44(3):166-172. [19] SEMNANI S,ATTARNEJAD R,FIROUZJAEI R.Free vibration analysis of variable thickness thin plates by two-dimensional differential transform method[J].Acta Mechanica,2013,224(8):1643-1658. [20] OZGUMUS O O,KAYA M O.Vibration analysis of a rotating tapered Timoshenko beam using DTM[J].Meccanica,2010,45(1):33-42. [21] MUKHTAR F M.Free vibration analysis of orthotropic plates by differential transform and Taylor collocation methods based on a refined plate theory[J].Archive of Applied Mechanics,2017,87(1):15-40. [22] 滕兆春,昌博,付小华.弹性地基上转动功能梯度材料Timoshenko梁自由振动的微分变换法求解[J].中国机械工程,2018,29(10):1147-1152. [23] ELISHAKOFF I,PENTARAS D,GENTILINI C.Mechanics of functionally graded material structures[M].Singapore:World Scientific,2015. [24] RAO S S.Vibration of continuous systems[M].Second Edition,Hoboken:John Wiley & Sons,2019. [25] LAL R,SAINI R.Buckling and vibration analysis of non-homogeneous rectangular Kirchhoff plates resting on two-parameter foundation[J].Meccanica,2015,50(4):893-913. [26] LAL R,DHANPATI.Transverse vibrations of non-homogeneous orthotropic rectangular plates of variable thickness:A spline technique[J].Journal of Sound and Vibration,2007,306(1/2):203-214. [27] HOSSEINI-HASHEMI S,FADAEE M,ATASHIPOUR S R.A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates[J].International Journal of Mechanical Sciences,2011,53(1):11-22. |