[1] LU T,LIN J,ZHAO L,et al.A security architecture in cyber-physical systems:security theories,analysis,simulation and application fields [J].International Journal of Security &Its Applications,2015,9(7):1-16. [2] 吕雪峰,谢耀滨.一种基于状态迁移图的工业控制系统异常检测方法[J].自动化学报,2018,44(9):1662-1671. [3] ASHFAQ R A R,WANG X Z,HUANG J Z,et al.Fuzziness based semi-supervised learning approach for intrusion detection system[J].Information Sciences,2016,378:484-497. [4] JABBAR M A,SAMREEN S.Intelligent network intrusion detection using alternating decision trees[C]//2016 International Conference on Circuits,Controls,Communications and Computing (I4C).Bangalore,India:IEEE,2016:1-6. [5] RUIZ Z,SALVADOR J,GARCIA-RODRIGUEZ J.A survey of machine learning methods for big data[C]//International Work-Conference on the Interplay Between Natural &Artificial Computation.[S.l.]:Springer,2017:259-267. [6] LI L,HAO Z,PENG H,et al.Nearest neighbors based density peaks approach to intrusion detection[J].Chaos Solitons &Fractals,2018,110:33-40. [7] CHAPELLE O,HAFFNER P,VAPNIK V N.Support vector machines for histogram-based image classification[J].IEEE Transactions on Neural Networks,1999,10(5):1055-1064. [8] SHAMSUI H,HOHN Y,MEHEDI H M,et al.Securing the operations in SCADA-IoT platform based industrial control system using ensemble of deep belief networks[J].Applied Soft Computing,2018,71:66-77. [9] KIM G,LEE S,KIM S.A novel hybrid intrusion detection method integrating anomaly detection with misuse detection[J].Expert Systems with Applications,2014,41(4):1690-1700. [10] SHANG W,CUI J,SONG C,et al.Research on industrial control anomaly detection based on FCM and SVM[C]//2018 17th IEEE International Conference on Trust,Security and Privacyin Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE).New York,USA:IEEE,2018:218-222. [11] BEAVER J M,BORGES-HINK R C,BUCKNER M A.An evaluation of machine learning methods to detect malicious SCADA Communications[C]//2013 12th International Conference on Machine Learning and Applications.Miami,USA:IEEE,2013:54-59. [12] KISS I,GENGE B,HALLER P.A clustering-based approach to detect cyber attacks in process control systems[C]//IEEE International Conference on Industrial Informatics.Cambridge,England:IEEE,2015:142-148. [13] SOKOLOV A N,PYATNITSKY I A,ALABUGIN S K.Research of classical machine learning methods and deep learning models effectiveness in detecting anomalies of industrial control system[C]//2018 Global Smart Industry Conference (GloSIC).Chelyabinsk,Russia:IEEE,2018:1-6. [14] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521:436-444. [15] XU L,CAO M,SONG B,et al.pen-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network[J].Neurocomputing,2018,311:1-10. [16] ZENG N,ZHANG H,SONG B,et al.Facial expression recognition via learning deep sparse autoencoders[J].Neurocomputing,2018,273:643-649. [17] WAHAB O A,MOURAD A,OTROK H,et al.CEAP:SVM-based intelligent detection model for clustered vehicular ad hoc networks[J].Expert Systems with Applications,2016,50:40-54. [18] DAS S,DASGUPTA S,BISWAS A,et al.On stability of the chemotactic dynamics in bacterial-foraging optimization algorithm[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2009,39(3):670-679. [19] COELLO C A C,PULIDO G T,LECHUGA M S.Handling multiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):256-279. [20] DOWNS J J,VOGEL E F.A plant-wide industrial process control problem[J].Computers and Chemical Engineering,1993,17(3):245-255. [21] CHANG C C,LIN C J.LIBSVM:a library for support vector machines[DB/OL].(2020-11-10).http://www.csie.ntu.edu.tw/~cjlin/libsvm. |