[1] BERNSTEIN I N,GEL’FAN I M,PONOMAREV V A.Coxeter functors and a theorem of Gabriel’s [J].Usp Mat Nauk,1973,28:19-33. [2] BRENNER S,BUTLER M C R.Generalizations of the bernstein-gelfand-ponoma revre flection functors [M].Berlin:Springer Berlin Heidelberg,1980:7-111. [3] SALCE L.Cotorsion theories for abelian groups [J].Symposia Math,1979,23:11-32. [4] GÖBEL R,TRLIFA J J.Approximations and endomorphism algebras of modules [M].Berlin:Walter de Gruyter,2006:99-125. [5] WANG J,LI Y X,HU J S.When the kernel of a complete hereditary cotorsion pair is the additive closure of a tilting module [J].J Algebra,2019,530:94-113. [6] ENOCHS E E,JENDA O M G.Relative homological algebra [M].Berlin:Walter de Gruyter,2000:169-172. [7] HOLM H.Gorenstein homological dimensions [J].J Pure Appl Algebra,2004,189:167-193. [8] AROCH J,TOVÍČE K J.Singular compactness and definability for Σ-cotorsion and Gorenstein modules [J].Selecta Mathmatic-New Series,2020,26(2):1-40. [9] BENNIS D,MAHDOU N.Strongly Gorenstein projective,injective,and flat modules [J].J Pure Appl Algebra,2007,210:437-445. [10] KRAUSE H,SOLBERGØ.Applications of cotorsion pairs [J].J Lond Math Soc,2003,68:631-650. [11] GILLESPIE J.Gorenstein complexes and recollements from cotorsion pairs [J].Advance in Math,2016,291:859-911. [12] ANGELERI HÜGEL L,COELHO F U.Infinitely generated tilting modules of finite projective dimension [J].Forum Math,2001,13:239-250. [13] CHRISTENSEN L W,FRANKILD A,HOLM H.On Gorenstein projective,injective and flat dimensions-A functorial description with applications [J].J Algebra,2006,302:231-279. [14] BAZZONI S.A characterization of n-cotilting and n-tilting modules [J].J Algebra,2004,273:359-372. |