[1] 雷亚国,贾 峰,孔德同,等.大数据下机械智能故障诊断的机遇与挑战 [J].机械工程学报,2018,54(5):94-104. [2] 赵荣珍,于 昊,徐继刚.基于LMD近似熵与HMM的转子故 障诊断方法 [J].兰州理工大学学报,2012,38(6):24-29. [3] 李霁蒲,赵荣珍.近邻概率距离在旋转机械故障集分类中的应用方法 [J].振动与冲击,2018,37(11):8-54. [4] GUYON I,ELISSEEFF A,KAELBLING L P.An introduction to variable and feature selection [J].Journal of Machine Learning Research,2003,3(7/8):1157-1182. [5] KOHAVI R,JOHN G H.Wrappers for feature subset Selection[J].Artificial Intelligence,1997,97(1/2):273-324. [6] BISHOP C M.Neural networks for pattern Recognition [M].New York:Oxford University Press,1995. [7] HE X F,CAI D,NIYOGI P.Laplacian score for featureselection.[C]//Neural Information Proceesing System 18.Cambridge:MIT Press,2005:249-256. [8] HE X F,NIYOGI P.Locality preserving projections [C]// Neural Information Processing Systems16.Vancouver:MIT Press.2003:153-160. [9] BELKIN M,NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering [C]//Advances in Neural Information Processing Systems 14.Cambridge:MIT Press,2001:585-591. [10] 杨晨晖,侯超群.一种用于阿尔茨海默病分类的二阶段多任务特征选择算法 [J].厦门大学学报(自然科学版),2018,57(5):708-714. [11] 程军圣,郑近德,杨 宇,等.基于部分集成局部特征尺度分解与拉普拉斯分值的滚动轴承故障诊断模型 [J].振动工程学报,2014,27(6):942-950. [12] 周念成,周 川,王强钢,等.基于改进拉普拉斯分值的开关柜故障特征选择和诊断方法 [J].电网技术,2015,39(3):850-855. [13] 柯佳佳.基于随机邻域嵌入的机械故障特征提取方法 [D].南京:东南大学,2015. [14] TURK M,PENTLAND A.Eigenfaces for recognition [J].Journal of Cognitive Neuroscience,1991,3(1):71-86. [15] WANG Jigang,NESKOVIC P,COOPER L N.Neighborhood size selection in the k-nearest-neighbor rule using statistical confidence [J].Pattern Recognition,2006,39(3):417-423. [16] 赵荣珍,李 超,张优云.中值与小波消噪集成的转子振动信号滤波方法研究 [J].振动与冲击,2005,24(4):74-77. [17] 霍天龙,赵荣珍,胡宝权.基于熵带法与PSO优化的SVM转子故障诊断 [J].振动.测试与诊断,2011,31(3):279-284. |