[1] BELIGIANNIS A,REITEN I.Homological and homotopical aspects of torsion theories [M].Am:Memoirs of the Amer Math Soc,2007. [2] WAKAMATSU T.Tilting modules and Auslander's Gorenstein property [J].J Algebra,2004,275(1):3-39. [3] HUANG Z Y.Generalized tilting modules with finite injective dimension [J].J Algebra,2007,311(2):619-634. [4] MANTESE F,REITEN I.Wakamatsu tilting modules [J].J Algebra,2004,278(2):532-552. [5] OUARGHI K.X-Gorenstein injective modules [J].Research J Pure Algebra,2011,1(3):77-80. [6] MENG F Y,PAN Q X.X-Gorenstein projective modules and Y- Gorenstein injective modules [J].Hacettepe J Math & Stat,2011,40:537-554. [7] KADISON L.The jones polynomial and certain separable Frobenius extensions [J].J Algebra,1996,186(2):461-475. [8] KADISON L.New example of Frobenius extension [M].Rhode Island:American Mathematical Society,1999. [9] KOCK J.Frobenius algebras and 2D topological quantum field theories [M].London:Cambridge University Press,2004. [10] XI C C.Frobenius bimodules and flat-dominant dimensions [J].Sci China Math,2021,64(1):33-44. [11] ZHAO Z B.Gorenstein homological invariant properties under Frobenius extensions [J].Sci China Math,2019,62(12):2487-2496. [12] HUANG Z Y,SUN J X.Invariant properties of representations under excellent extensions [J].J Algebra,2012,358(1):87-101. [13] REN W.Gorenstein projective and injective dimensions over Frobenius extensions [J].Communications in Algebra,2018,46(12):5348-5354. [14] AUSLANDER M,BRIDGER M.Stable module theory [M].Rhode Island:American Mathematical Society,1969. |