[1] 陈亚茹,陈世平.融合自注意力机制和BiGRU网络的微博情感分析模型 [J].小型微型计算机系统,2020,41(8):1590-1595. [2] XU J,HUANG F,ZHANG X,et al.Visual-textual sentiment classification with bi-directional multi-level attention networks [J].Knowledge-Based Systems,2019,178:61-73. [3] PORIA S,CAMBRIA E,HAZARIKA D,et al.Multi-level multiple attentions for contextual multimodal sentiment analysis [C]//2017 IEEE International Conference on Data Mining (ICDM).[S.l.]:IEEE,2017:1033-1038. [4] KUMAR A,VEPA J.Gated mechanism for attention based multi modal sentiment analysis [C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).[S.l.]:IEEE,2020:4477-4481. [5] LUACES O,DÍEZ J,BARRANQUERO J,et al.Binary relevance efficacy for multilabel classification [J].Progress in Artificial Intelligence,2012,1(4):303-313. [6] SPOLAÔR N,CHERMAN E A,MONARD M C,et al.A comparison of multi-label feature selection methods using the problem transformation approach [J].Electronic Notes in Theoretical Computer Science,2013,292:135-151. [7] ZHANG M L,ZHOU Z H.ML-KNN:A lazy learning approach to multi-label learning [J].Pattern Recognition,2007,40(7):2038-2048. [8] ELISSEEFF A,WESTON J.A kernel method for multi-labelled classification [J].Advances in Neural Information Processing Systems,2001,14:681-687. [9] KURATA G,XIANG B,ZHOU B.Improved neural network-based multi-label classification with better initialization leveraging label co-occurrence [C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.San Diego,CA:[s.n.],2016:521-526. [10] CHEN G,YE D,XING Z,et al.Ensemble application of convolutional and recurrent neural networks for multi-label text categorization [C]//2017 International Joint Conference on Neural Networks (IJCNN).[S.l.]:IEEE,2017:2377-2383. [11] NAM J,MENCÍA E L,KIM H J,et al.Maximizing subset accuracy with recurrent neural networks in multi-label classification [C/OL].[2021-07-10].https://proceedings.neurips.cc/paper/2017/file/2eb5657d37f474e4c4cf01e4882b8962-Paper.pdf. [12] ADHIKARI A,RAM A,TANG R,et al.Rethinking complex neural network architectures for document classification [C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1 (Long and Short Papers).Seattle:[s.n.],2019:4046-4051. [13] LIN J,SU Q,YANG P,et al.Semantic-unit-based dilated convolution for multi-label text classification[C/OL].[2021-07-10].https:arxiv.org/pdf/1808.08561.pdf. [14] TANG P,JIANG M,XIA B N,et al.Multi-label patent categorization with non-local attention-based graph convolutional network [J].Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(5):9024-9031. [15] YANG J,WANG K,YAN J.Incorporating label Co-occurrence into neural network-based models for multi-label text classification [J].IEEE Access,2019,7:183580-183588. [16] YANG P,SUN X,LI W,et al.SGM:sequence generation model for multi-label classification [C]//Proceedings of the 27th International Conference on Computational Linguistics.City of Santa Fe:[s.n.],2018:3915-3926. [17] XIAO L,HUANG X,CHEN B,et al.Label-specific document representation for multi-label text classification[C/OL].[2021-07-10].https:/www.aclweb.web.org/anthology/D19-1044.pdf. [18] LIAO W,WANG Y,YIN Y,et al.Improved sequence generation model for multi-label classification via CNN and initialized fully connection [J].Neurocomputing,2020,382:188-195. [19] RAMAGE D,HALL D,NALLAPATI R,et al.Labeled LDA:A supervised topic model for credit attribution in multi-labeled corpora [C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing.Singapore:[s.n.],2009:248-256. [20] LEWIS D D,YANG Y,RUSSELL-ROSE T,et al.Rcv1:A new benchmark collection for text categorization research [J].Journal of Machine Learning Research,2004(5):361-397. [21] KIM Y.Convolutional neural networks for sentence classification [C/OL].[2021-07-10].https://arxiv.org/pdf/1408.5882.pdf. |