[1] ALMASI A.Optimum selection and design of reciprocating compressor for petroleum services [J].Proceedings of the Institution of Mechanical Engineers,Part E:Journal of Process Mechanical Engineering,2010,224(1):63-66. [2] 赵 祎.基于机器统计学习的往复式压缩机故障预警及诊断技术研究 [D].北京:北京化工大学,2019. [3] ZHANG Y,JI J C,MA B.Reciprocating compressor fault diagnosis using an optimized convolutional deep belief network [J].JVC/Journal of Vibration and Control,2020,26(17/18):1538-1548. [4] GOLMORADI M,EBRAHIMI E,JAVIDAN M.Compressor fault diagnosis based on SVM and GA [J].Vibroengineering Procedia,2017,12:49-53. [5] ZHANG K,SU J P,SUN S A,et al.Compressor fault diagnosis system based on PCA-PSO-LSSVM algorithm [J].Science Progress,2021,104(3):368-374. [6] TOWNSEND J,BADAR M A.Impact of condition monitoring on reciprocating compressor efficiency [J].Journal of Quality in Maintenance Engineering,2018,24(4):529-543. [7] 王 伟,姚 杨,马最良.基于BP神经网络的压缩机性能预测模型的建立 [J].流体机械,2005,33(9):21-24. [8] 丁国良,李 灏,陈江平,等.制冷压缩机热力性能的神经网络模拟 [J].上海交通大学学报,1999,33(3):265-267. [9] 刘 超.一种新的模糊神经网络的多级离心压缩机性能预测方法 [J].计算机测量与控制,2013,21(9):2422-2424. [10] 王崇亮,张 帅,李前舸,等.压缩机性能试验系统的故障检测及可靠性研究 [J].制冷技术,2019,39(3):22-29. [11] 张红卫,申双和,陈怀亮.冬季温度的主成分分析 [J].安徽农业科学,2008,25(3):10725-10728,10744. [12] 国家标准化管理委员会.GB 19153—2019 容积式空气压缩机能效限定值及能效等级 [S].北京:国家市场监督管理总局,国家标准化管理委员会,2019. [13] MLAKAR U,FISTER JR I,FISTER I.Hybrid self-adaptive cuckoo search for global optimization [J].Swarm and Evolutionary Computation,2016,29(6):47-72. [14] 康亮河.基于AdaBoost-IWOA-Elman算法的股市网络舆情预测研究 [D].兰州:兰州理工大学,2020. [15] 史雨川.基于AFSA-BP神经网络的基坑变形预测模型研究 [J].计算机与数字工程,2013,41(12):1894-1897,1938. [16] 申慧敏,李 鹏.多目标遗传优化算法自适应策略及其在石油加工中的应用 [J].石油化工自动化,2007,29(2):29-32. |