[1] 王 丹,续 丹,曹秉刚.电动汽车关键技术发展综述 [J].中国工程科学,2013,15(1):68-72.
[2] NGWENDSON L,SWEET M R,NARAYANAN E M S.An overview of the recent developments in high-voltage powersemiconductor MOS-controlled bipolar devices [C/OL].[2021-10-20].https://ieeexplore.ieee.org/document/5314159.
[3] 钱照明,张军明,盛 况.电力电子器件及其应用的现状和发展 [J].中国电机工程学报,2014,34(29):5149-5161.
[4] 何湘宁,宗 升,吴建德,等.配电网电力电子装备的互联与网络化技术 [J].中国电机工程学报,2014,34(29):5162-5170.
[5] YANG S,XIANG D,BRYANT A,et al.Condition monitoring for device reliability in power electronic converters:a review [J].IEEE Transactions on Power Electronics,2010,25(11):2734-2752.
[6] 李志星,张鑫宇,平恩顺.基于PFA的IGBT键合线失效机理及寿命预测 [J].半导体技术,2013,38(9):681-684.
[7] FANG X,LIN S,HUAG X,et al.A review of data-driven prognostic for IGBT remaining useful life [J].Chinese Journal of Electrical Engineering,2018,4(3):73-79.
[8] DENG E,ZHAO Z,XIN Q,et al.Analysis on the difference of the characteristic between high power IGBT modules and press pack IGBTs [J].Microelectronics Reliability,2017,78:25-37.
[9] JIANG M,FU G,CECCARELLI L,et al.Finite element modeling of IGBT modules to explore the correlation between electric parameters and damage in bond wires [C]//2019 IEEE Energy Conversion Congress and Exposition (ECCE).Baltimore:IEEE,2019:839-844.
[10] 郭子庆,王学华.基于神经网络的IGBT模块剩余使用寿命预测模型 [J].电测与仪表,2023,60(1):132-138.
[11] DOU Y.An improved prediction model of IGBT junction temperature based on backpropagation neural network and Kalman filter [J].Complexity,2021(2):1-10.
[12] SMET V,FOREST F,USELSTEIN J J,et al.Ageing and failure modes of IGBT modules in high-temperature power cycling [J].IEEE Transactions on Industrial Electronics,2011,58(10):4931-4941.
[13] LI W,WANG B,LIU J,et al.IGBT aging monitoring and remaining lifetime prediction based on long short-term memory (LSTM) networks [J].Microelectronics Reliability,2020,114:113902.
[14] WU H,YE C,ZHANG Y,et al.Remaining useful life prediction of an IGBT module in electric vehicles statistical analysis [J].Symmetry,2020,12(8):1325.
[15] YANG L,AGYAKWA P A,JOHNSON C M.Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules [J].IEEE Transactions on Device and Materials Reliability,2012,13(1):9-17.
[16] GGIMIRE P,PEDERSEN K B,DD VEGA A R,et al.A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application [C]//CIPS 2014 8th International Conference on Integrated Power Electronics Systems.Nuremberg:VDE,2014:1-6.
[17] 刘子英,朱琛磊.基于Elman神经网络模型的IGBT寿命预测 [J].半导体技术,2019,44(5):395-400.
[18] 史业照,郭 斌,郑永军.基于LSTM网络的IGBT寿命预测研究 [J].中国测试,2024,50(2):54-58.
[19] SCHEUERMANN U,SCHMIDT R.Investigations on the VCE (T)-method to determine the junction temperature by using the chip itself as sensor [C]//International Exhibition and Conference on Power Electronics,Intelligent Motion and Power Quality.Nuremberg:[s.n.],2009:802-807.
[20] BECZKOWSKI S,GHIMIE P,DE VEGA A R,et al.Online Vce measurement method for wear-out monitoring of high power IGBT modules [C]//2013 15th European Conference on Power Electronics and Applications (EPE).Lille:IEEE,2013:1-7.
[21] CHOI U M,MA K,BLAABJERG F.Validation of lifetime prediction of IGBT modules based on linear damage accumulation by means of superimposed power cycling tests [J].IEEE Transactions on Industrial Electronics,2017,65(4):3520-3529.
[22] ZHANG J,WANG P,YAN R,et al.Long short-term memory for machine remaining life prediction [J].Journal of Manufacturing Systems,2018,48:78-86.
[23] XU K,BA J,KIROS R,et al.Show,attend and tell:neural image caption generation with visual attention [J].Computer Science,2015,37:2048-2057.
[24] BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate [C]//3rd International Conference on Learning Representations.San Diego:[s.n.],2015:14090473.
[25] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need [C]//Advances in Neural Information Processing Systems.Long Beach:[s.n.],2017:5998-6008.
[26] QIN Y,SONG D,CHEN H,et al.A dual-stage attention-based recurrent neural network for time series prediction [C/OL].[2021-12-10].https://www.ijcai.org/proceedings/2017/0366.pdf.
[27] CHEN Z,WU M,ZHAO R,et al.Machine remaining useful life prediction via an attention-based deep learning approach [J].IEEE Transactions on Industrial Electronics,2020,68(3):2521-2531.
[28] LI C,HOU Y,WANG P,et al.Joint distance maps based action recognition with convolutional neural networks [J].IEEE Signal Processing Letters,2017,24(5):624-628.
[29] JIN X B,ZHENG W Z,KONG J L,et al.Deep-learning forecasting method for electric power load via attention-based encoder-decoder with Bayesian optimization [J].Energies,2021,14(6):1596.
[30] PELIKAN M,GOLDBERG D,CANTÚ-PAZ E.BOA:the Bayesian optimization algorithm [C]//Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99).Orlando:Morgan Kaufmann,1999:525-532.
[31] SHAHRIARI B,SWERSKY K,WANG Z,et al.Taking the human out of the loop:a review of Bayesian optimization [J].Proceedings of the IEEE,2015,104(1):148-175.
[32] EKER O F,CAMCI F,JENNIONS I K.Major challenges in prognostics:study on benchmarking prognostics datasets [C]//Proceedings of the 1st European Conference of the Prognostics and Health Management Society.Dresden:PHM Society,2012:148-155. |