[1] MA H Q,HUANG W J,DONG Y Y,et al.Using UAV-based hyperspectral imagery to detect winter wheat fusarium head blight [J].Remote Sensing,2021,13(15):3024. [2] NTURAMBIRWE J F,PEROLD W J,OPARA U L,et al.Classification learning of latent bruise damage to apples using shortwave infrared hyperspectral imaging [J].Sensors,2021,21(15):4990. [3] YU R,REN L L,LUO Y Q,et al.Early detection of pine wilt disease in Pinus tabuliformis in North China using a field portable spectrometer and UAV-based hyperspectral imagery [J].Forest Ecosystems,2021,8(1):44. [4] XIE W Y,ZHANG J Q,LEI J,et al.Self-spectral learning with GAN based spectral-spatial target detection for hyperspectral image [J].Neural Networks,2021,142:375-387. [5] REZA S M,HASAN G.A probabilistic SVM approach for hyperspectral image classification using spectral and texture features [J].International Journal of Remote Sensing,2017,38(15):4265-4284. [6] KOHEI A.Maximum likelihood classification based on classified result of boundary mixed pixels for high spatial resolution of satellite images [J].International Journal of Advanced Computer Science and Applications,2020,11(9):24-30. [7] 颜铭靖,苏喜友.基于三维空洞卷积残差神经网络的高光谱影像分类方法 [J].光学学报,2020,40(16):163-172. [8] JOHN R A,KANDASAMY J,VIGNESH T,et al.Development of computer vision for inspection of bolt using convolutional neural network [J].Materials Today: Proceedings,2021,45(7):6931-6935. [9] LAKHAL M Y,CEVIKALP H,ESCALERA S.et al.Recurrent neural networks for remote sensing image classification [J].IET Computer Vision,2018,12(7):1040-1045. [10] ATIF M,LIN M T.Multiple deep-belief-network based spectral-spatial classification of hyperspectral images [J].Tsinghua Science and Technology,2019,24(2):183-194. [11] 康 妙,计科峰,冷祥光,等.基于桟式自编码器特征融合的SAR图像车辆目标识别 [J].雷达学报,2017,6(2):167-176. [12] 胡 丽,单 锐,王 芳,等.基于双通道空洞卷积神经网络的高光谱图像分类 [J].激光与光电子学进展,2020,57(12):356-362. [13] ROY S K,KRISHNA G,DUBEY S R,et al.HybridSN:exploring 3D-2D CNN feature hierarchy for hyper spectral image classification [J].IEEE Geoscience and Remote Sensing Letters,2020,17(2):277-281. [14] ZHONG Z L,LI J,LUO Z M,et al.Spectral-spatial residual network for hyperspectral image classification:a 3-D deep learning framework [J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(2):847-858. [15] HU J,SHEN L,SUN G,et al.Squeeze-and-excitation networks [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2018:7132-7141. [16] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778. [17] YUE J,ZHAO W Z,MAO S J,et al.Spectral-spatial classification of hyperspectral images using deep convolutional neural networks [J].Remote Sensing Letters,2015,6(6):468-477. [18] CHEN S T,JIN M,DING J.Hyperspectral remote sensing image classification based on dense residual three-dimensional convolutional neural network [J].Multimedia Tools and Applications,2021,80(2):1859-1882. [19] YAO W,LIAN C,BRUZZONE L.Cluster-CNN:clustering-based feature learning for hyperspectral image classification [J].IEEE Geoscience and Remote Sensing Letters,2021,18(11):1991-1995. [20] LI L,YIN J H.Joint spatial-spectral attention network for hyperspectral image classification [J].IEEE Geoscience and Remote Sensing Letters,2021,18(10):1816-1820. |