[1] ARIBI A,FARGES C,AOUN M,et al.Fault detection based on fractional order models:application to diagnosis of thermal systems [J].Communications in Nonlinear Science & Numerical Simulation,2014,19(10):3679-3693. [2] KULISH V V,LAGE J L.Application of fractional calculus to fluid mechanics [J].Journal of Fluids Engineering,2002,124(3):803-806. [3] ZAHOOR R,QURESHI I M.A modified least mean square algorithm using fractional derivative and its application to system identification [J].European Journal of Scientific Research,2009,35(1):14-21. [4] YANG F,FU C L.A simplified Tikhonov regularization method for determining the heat source [J].Applied Mathematical Modelling,2010,34:3286-3299. [5] WANG J G,WEI T,ZHOU Y B.Tikhonov regularization method for a backward problem for the time-fractional diffusion equation [J].Applied Mathematical Modelling,2013,37(18/19):8518-8532. [6] YANG F,FU J L.The method of simplified Tikhonov regularization for dealing with the inverse time-dependent heat source problem [J].Computers & Mathematics with Applications,2010,60(5):1228-1236. [7] 杨 帆,郭亨贞,万诗敏,等.抛物方程热源识别的中心差分正则化方法 [J].兰州理工大学学报,2011,37(6):140-144. [8] YANG F,FU J L,FAN P,et al.Fractional landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion problem [J].Acta Applicandae Mathematicae,2021,175(1):1-19. [9] LI D G,YANG F,FAN P,et al.Landweber iterative regularization method for reconstructing the unknown source of the modified Helmholtz equation [J].AIMS Mathematics,2021,6(9):10327-10342. [10] XIONG X T,XUE X M.Fractional Tikhonov method for an inverse time-fractional diffusion problem in 2-Dimensional Space [J].Bulletin of the Malaysian Mathematical Sciences Society,2018,43:25-38. [11] QIAN A L,XIONG X T,WU Y J.On a quasi-reversibility regularization method for a Cauchy problem of the Helmholtz equation [J].Journal of Computational & Applied Mathematics,2010,233(8):1969-1979. [12] YANG F,WU H H,LI X X.Three regularization methods for identifying the initial value of homogeneous anomalous secondary diffusion equation [J].Mathematical Methods in the Applied Sciences,2021,44(17):13723-13755. [13] YANG F,FU J L,LI X X.A potential-free field inverse Schrödinger problem:optimal error bound analysis and regularization method [J].Inverse Problems in Science and Engineering,2020,44(2):1219-1251. [14] 段俊生.含Caputo分数阶导数的分数阶微分方程 [J].天津轻工业学院学报,2003,18(B12):21-24. [15] HEINZ W E,HANKE M,NEUBAUER A.Regularization of Inverse Problem [M].Boston:Kluwer Academic,1996. |