[1] 杨立伟,张晓瑞.长输管道工艺站场埋地管线腐蚀原因及防护途径探讨 [J].中国石油和化工标准与质量,2022,42:38-39. [2] 于力晗.第十届全国腐蚀大会摘要集 [C].南昌:中国腐蚀与防护学会,2019:39-41. [3] WANG X M,TAN Y F,ZHANG T T.et al.Numerical study on the diffusion process of pinhole leakage of natural gas from underground pipelines to the soil [J].Journal of Natural Gas Science and Engineering,2021,87:103792. [4] KIM J G,KIM Y W,KANG M C.Corrosion characteristics of rigid polyurethane thermally insulated pipeline with insulation defects [J].The Journal of Science and Engineering,2002,58(2):28-32. [5] 陈健飞,王 孟,江文军,等.基于灰色关联度的埋地管道检测数据分析 [J].表面技术,2017,46(4):264-269. [6] 张 杰.基于主成分-聚类分析法的管道风险评价方法 [J].油气储运,2014,33(2):139-143. [7] SWATI J.Corrosion conference and expo [C].Dallas:NACE International,2015:4398-4412. [8] 孟 倩,马小平,周 延.改进的粒子群支持向量机预测瓦斯涌出量 [J].矿业安全与环保,2015,42(2):1-5. [9] 骆正山,姚梦月,骆济豪,等.基于KPCA-BAS-GRNN的埋地管道外腐蚀速率预测 [J].表面技术,2018,47(11):173-180. [10] 邓志安,李姝仪,李晓坤,等.基于模糊神经网络的海洋管线腐蚀速率预测新方法 [J].中国腐蚀与防护学报,2015,35(6):571-576. [11] 崔梦天,梁 杰,龙松林,等.基于PFA-BP神经网络的软件缺陷预测模型的研究 [J].西南民族大学学报,2021,47(5):510-514. [12] 王 琬,张俊文,林 铭,等.基于BP人工神经网络理论对埋地燃气管线腐蚀剩余寿命研究 [J].现代机械,2010,25(3):44-46. [13] ROMANOFF M.Underground corrosion [M].Houston:National Association of Corrosion Engineers,1957. [14] CALEYO F,VELAZQUEZ J C,VALOR A,et al.Probability distribution of pitting corrosion depth and rate in underground pipelines:a Monte Carlo study [J].Corrosion Science,2009,51(9):1925-1934. [15] 林海明.对主成分分析法运用中十个问题的解析 [J].统计与决策,2007,28(16):16-18. [16] 潘林生.长输管道工艺站场埋地管线腐蚀原因及防护对策探讨 [J].化工管理,2020(15):187-188. [17] 张文跃.主成分分析法在地下水分析中的应用探究 [J].技术与市场,2016,23(5):234. [18] 陈 宁.基于主成分分析和BP神经网络的软件工作量估算方法 [J].信息与电脑,2022,34(3):80-83. [19] FAN C H,HE Y T,ZHANG H X,et al.Predictive model based on genetic algorithm-neural network for fatigue performances of pre-corroded aluminum alloys [J].Key Engineering Materials,2007(353/354/355/356/357/358):1029-1032. [20] WANG H,YAJIMA A,LIANG R Y,et al.Bayesian modeling of external corrosion in underground pipelines based on the integration of Markov Chain Monte Carlo techniques and clustered inspection data [J].Computer-aided civil and infrastructure engineering,2015,30(4):300-316. |