[1] BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:a deep convolutional encoder-decoder architecture for image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [2] ALTAF F,ISLAM S M S,AKHTAR N,et al.Going deep in medical image analysis:concepts,methods,challenges,and future directions [J].IEEE Access,2019,7:99540-99572. [3] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation [C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2015,9351:234-241. [4] ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.Unet++:a nested U-net architecture for medical image segmentation [C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Cham:Springer,2018:11045. [5] OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention U-net:learning where to look for the pancreas [DB/OL].(2018-04-11)[2022-04-25].https://arxiv.org/abs/1804.03999. [6] ALOM M Z,HASAN M,YAKOPCIC C,et al.Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation [DB/OL].(2018-01-20)[2022-04-25].https://arxiv.org/abs/1802.06955. [7] LI X,CHEN H,QI X,et al.H-DenseUNet:hybrid densely connected UNet for liver and tumor segmentation from CT volumes [J].IEEE Transactions on Medical Imaging,2018,37(12):2663-2674. [8] TAJBAKHSH N,JEYASEELAN L,LI Q,et al.Embracing imperfect datasets:a review of deep learning solutions for medical image segmentation [J].Medical Image Analysis,2020,63:101693. [9] 张 粲,孟 雪,王常青,等.基于对抗学习网络的半监督医学图像分割方法 [J].工业控制计算机,2021,34(9):57-59. [10] YUAN Y.Automatic skin lesion segmentation with fully convolutional-deconvolutional networks [DB/OL].(2017-05-15)[2022-04-25].https://arxiv.org/abs/1703.05165. [11] ZHANG X.Melanoma segmentation based on deep learning [J].Computer Assisted Surgery,2017,22(S1):267-277. [12] 杨国亮,赖振东,喻丁玲.一种改进UNet++网络用于检测黑色素瘤皮肤病变 [J].中国医学影像技术,2020,36(12):1877-1881. [13] AL-MASNI M A,AL-ANTARI M A,CHOI M T,et al.Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks [J].Computer Methods and Programs in Biomedicine,2018,162:221-231. [14] XIE F,YANG J,LIU J,et al.Skin lesion segmentation using high-resolution convolutional neural network [J].Computer Methods and Programs in Biomedicine,2020,186:105241. [15] ATTIA M,HOSSNY M,NAHAVANDI S,et al.Skin melanoma segmentation using recurrent and convolutional neural networks [C]//2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).Melbourne:IEEE,2017:292-296. [16] GORRIZ M,CARLIER A,FAURE E,et al.Cost-effective active learning for melanoma segmentation [DB/OL].(2017-11-24)[2022-04-25].https://arxiv.org/abs/1711.09168. [17] ZHOU B,KHOSLA A,LAPEDRIZA A,et al.Learning deep features for discriminative localization [DB/OL].(2016-06-27)[2022-04-25].https://openaccess.thecvf.com/content_cvpr_2016/papers/Zhou_Learning_Deep_Features_CVPR_2016_paper.pdf. [18] SELVARAJU R R,CONGSWELL M,DAS A,et al.Grad-cam:visual explanations from deep networks via gradient-based localization [DB/OL].(2017-10-22) [2022-04-25].https://arxiv.org/abs/1610.02391. [19] JIANG P T,ZHANG C B,HOU Q,et al.LayerCAM:exploring hierarchical class activation maps for localization [J].IEEE Transactions on Image Processing,2021,30:5875-5888. [20] FENG X,YANG J,LAINE A F,et al.Discriminative localization in CNNs for weakly-supervised segmentation of pulmonary nodules [C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2017:568-576. [21] GARCIA-GARCIA A,ORTS-ESCOLANO S,OPREA S,et al.A review on deep learning techniques applied to semantic segmentation [DB/OL].(2017-04-22) [2022-04-25].https://arxiv.org/abs/1704.06857. [22] ISIC melanoma dataset [EB/OL].[2020-05-28].https://www.isic-archive.com/#!/onlyHeaderTop/gallery. [23] ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[DB/OL].(2017-07-21)[2022-04-25].https://arxiv.org/abs/1612.01105. [24] MIRIKHARAJI Z,HAMARNEH G.Star shape prior in fully convolutional networks for skin lesion segmentation [C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2018:737-745. [25] JÉGOU S,DROZDZAL M,VAZQUEZ D,et al.The one hundred layers tiramisu:fully convolutional DenseNets for semantic segmentation [DB/OL].(2017-07-21) [2022-04-25].https://arxiv.org/abs/1611.09326. [26] ÖZTÜRK Ş,ÖZKAYA U.Skin lesion segmentation with improved convolutional neural network [J].Journal of Digital Imaging,2020,33(4):958-970. |