[1] 熊平,朱天清,王晓峰.差分隐私保护及其应用[J].计算机学报,2014,37(1):101-122. [2] 何贤芒,王晓阳,陈华辉,等.差分隐私保护参数ε的选取研究[J].通信学报,2015,36(12):124-130. [3] 穆海蓉,丁丽萍,宋宇宁,等.DiffPRFs:一种面向随机森林的差分隐私保护算法[J].通信学报,2016,37(9):175-182. [4] 陈思,付安民,柯海峰,等.MCDP:基于神经网络的多集群分布式差分隐私数据发布方法[J].电子学报,2020,48(12):2297-2303. [5] 方晨,郭渊博,王娜,等.基于生成对抗网络的差分隐私数据发布方法[J].电子学报,2020,48(10):1983-1992. [6] 叶阿勇,孟玲玉,赵子文,等.基于预测和滑动窗口的轨迹差分隐私保护机制[J].通信学报,2020,41(4):123-133. [7] 王斌,张磊,张国印.敏感渐进不可区分的位置隐私保护[J].计算机研究与发展,2020,57(3):160-174. [8] 朱维军,游庆光,杨卫东,等.基于统计差分的轨迹隐私保护[J].计算机研究与发展,2017,54(12):179-186. [9] 吴云乘,陈红,赵素云,等.一种基于时空相关性的差分隐私轨迹保护机制[J].计算机学报,2018,41(422):37-50. [10] 霍峥,孟小峰.一种满足差分隐私的轨迹数据发布方法[J].计算机学报,2018,41(2):400-412. [11] 杨旭东,高岭,王海,等.一种面向直方图发布的均衡差分隐私保护方法[J].计算机学报,2020,43(8):1414-1432. [12] 张啸剑,孟小峰.基于差分隐私的流式直方图发布方法[J].软件学报,2016,27(2):381-393. [13] 彭慧丽,金凯忠,付聪聪,等.基于序列格的隐私时序模式挖掘方法[J].电子学报,2020,48(1):153-163. [14] 王金艳,刘陈,傅星珵,等.差分隐私的数据流关键模式挖掘方法[J].软件学报,2019,30(3):648-666. [15] 张啸剑,王淼,孟小峰.差分隐私保护下一种精确挖掘top-k频繁模式方法[J].计算机研究与发展,2014,51(1):104-114. [16] 叶青青,孟小峰,朱敏杰,等.本地化差分隐私研究综述[J].软件学报,2018,29(7):1981-2005. [17] ERLINGSSON L,PIHUR V,KOROLOVA A.RAPPOR:Randomized aggregatable privacy-preserving ordinal response[J].ACM,2014(12):1054-1067. [18] ANDREW G,CHIEN S,PAPERNOT N.Tensor flow privacy [DB/OL].[2021-06-10].https://github.com/tensorflow/privacy. [19] DWORK C,FELDMAN V,HARDT M,et al.The reusable holdout:Preserving validity in adaptive data analysis[J].Science,2015,349(6248):636-638. [20] SHOKRI R,SHMATIKOV V.Privacy-preserving deep learning[C]//ACM Conference on Computer and Communications Security (CCS).Monticello:IEEE,2015:1310-1321. [21] ABADI M,CHU A,GOODFELLOW I,et al.Deep learning with differential privacy[C]//2016 ACM SIGSAC Conference.New York:ACM,2016:308-318. [22] PAPERNOT N,ABADI M,ERLINGSSON L,et al.Semi-supervised knowledge transfer for deep learning from private training data [C/OL].[2021-06-10].https://arxiv.org/pdf/1610.05755.pdf. [23] DONG J,ROTH A,SU W J.Gaussian differential privacy[J].Journal of the Royal Statistical Society Series B:Statistical Methodology,2022,84(1):3-37. [24] BU Z,DONG J,LING Q,et al.Deep learning with Gaussian differential privacy [J/OL].[2021-06-10].https://www.xueshufan.com/publication/2990147108. [25] WARNER S L.Randomized response:a survey technique for eliminating evasive answer bias[J].Publications of the American Statistical Association,1965,60(309):63-69. [26] 张啸剑,孟小峰.面向数据发布和分析的差分隐私保护[J].计算机学报,2014,37(4):927-949. [27] WORK C D.Differential privacy[C]//Proceedings of the 33rd international conference on Automata,Languages and Programming-Volume Part Ⅱ.Berlin,Heidelberg:Springer,2006:1-12. [28] DWORK C,MCSHERRY F,NISSIM K,et al.Calibrating noise to sensitivity in private data analysis[J].Journal of Privacy and Confidentiality,2017,7(3):17-51. [29] MCSHERRY F,TALWAR K.Mechanism design via differential privacy[C]//48th Annual IEEE Symposium on Foundations of Computer Science.Providence:IEEE,2007:94-103. |