|
基于Adaboost算法结合DEGWO-SVM的财务困境预测
朱昶胜,田慧星,冯文芳
2021 (6):
100-107.
摘要
(
238 )
PDF(1822KB)
(
316
)
针对支持向量机(SVM)在企业财务困境预测研究中存在参数选择困难、分类准确率低的问题,提出了一种新的Adaboost-DEGWO-SVM组合模型.首先,通过对2017年全部A股上市公司的财务数据进行数据预处理,提取1∶1的困境公司(ST)和正常公司组成建模数据集;然后,利用差分进化算法(DE)改进灰狼优化算法(GWO)来提高其全局搜索能力,以解决灰狼算法易陷入局部最优的问题,从而实现对SVM参数c和γ的寻优;最后,通过Adaboost算法提高了DEGWO-SVM模型的分类能力.实验结果表明,Adaboost-DEGWO-SVM组合预测模型具有明显的困境预测优势,与DEGWO-SVM相比,分类准确率提高了4.34%,Ⅰ类错误和Ⅱ类错误分别降低了0.043 5;与单一SVM相比,分类准确率提高了13.04%,Ⅰ类错误、Ⅱ类错误分别降低了0.130 4、0.130 5,是一种潜在的企业财务困境预测方法.
参考文献 |
相关文章 |
计量指标
|