[1] 蒋 浩,陈丙珍.化工过程稳定性分析研究进展[J].化工学报,2018,69(1):76-87. [2] 戴一阳,赵劲松,陈丙珍.化工过程混合故障诊断系统的应用[J].化工学报,2010,61(2):342-346. [3] 姚羽曼,罗文嘉,戴一阳.数据驱动方法在化工过程故障诊断中的研究进展[J].化工进展,2010,40(4):1755-1764. [4] 梁北辰,戴景民.偏最小二乘法在系统故障诊断中的应用[J].哈尔滨工业大学学报,2020,52(3):162-170. [5] 李元良,丁 坤,陈富东,等.基于快速过采样主成分分析法的光伏阵列故障诊断[J].电网技术,2019,43(1):308-315. [6] 陈 鹏,赵小强,朱奇先.基于VMD-MPE-KPCA特征提取与MRVM相混合的滚动轴承故障诊断方法[J].兰州理工大学学报,2020,46(5):92-99. [7] 孔祥玉,解 建,罗家宇,等.基于改进高效偏最小二乘的质量相关故障诊断[J].控制理论与应用,2020,37(12):2645-2653. [8] 沈 欧,李 元,吕 锋.基于PCA故障诊断的化工过程多智能体优化策略[J].吉林大学学报(工学版),2004,34(第15届中国过程控制会议专辑):203-206. [9] KINI K R,MADAKYARU M.Improved process monitoring strategy using kantorovich distance-independent component analysis:an application to Tennessee Eastman process[J].IEEE Access,2020,8:205863-205877. [10] DU B,KONG X,FENG X.Generalized principal component analysis-based subspace decomposition of fault deviations and its application to fault reconstruction[J].IEEE Access,2020,8:34177-34186. [11] ZHANG C,GUO Q,LI Y.Fault detection in the Tennessee Eastman benchmark process using principal component difference based on K-nearest neighbors[J].IEEE Access,2020,8:49999-50009. [12] JING C,HOU J.SVM and PCA based fault classification approaches for complicated industrial process[J].Neurocomputing,2015,167:636-642. [13] CHENG Y J,LIU H M,CHEN Y,et al.Fault diagnosis for rolling bearing based on SIFT-KPCA and SVM[J].Engineering Computations:International Journal for Computer-aided Engineering and Software,2017,34(1):53-65. [14] YANG G,GU X.Fault diagnosis of complex chemical processes based on enhanced Naive Bayesian method[J].IEEE Transactions on Instrumentation and Measurement,2020,69(7):4649-4658. [15] ZHAO S,CHENG X,LI J.Sensor fault diagnosis based on adaptive arc fuzzy DBN-petri net[J].IEEE Access,2021,9:20305-20317. [16] ZHANG X,HUANG T,WU B,et al.Multi-model ensemble deep learning method for intelligent fault diagnosis with high-dimensional samples[J].Frontiers of Mechanical Engineering,2021,16(2):340-352. [17] QIN F W,BAI J,YUAN W Q,et al.Research on intelligent fault diagnosis of mechanical equipment based on sparse deep neural networks[J].Journal of Vibroengineering,2017,19(4):2439-2455. [18] ZHANG Z,JIANG W,GENG J,et al.Fault diagnosis based on non-negative sparse constrained deep neural networks and Dempster-Shafer theory[J].IEEE Access,2020,8:18182-18195. [19] HAN S,YANG F,YANG G,et al.Electrical equipment identification in infrared images based on ROI-selected CNN method[J].Electric Power Systems Research,2020,188:106534. [20] CHEN Z,MAURICIO A,LI W,et al.A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks[J].Mechanical Systems and Signal Processing,2020,140:106683. [21] XU J,LIU X,WANG B,et al.Deep belief network-based gas path fault diagnosis for turbofan engines[J].IEEE Access,2019,7:170333-170342. [22] WU H,ZHAO J.Deep convolutional neural network model based chemical process fault diagnosis[J].Computers & Chemical Engineering,2018,115:185-197. [23] HAN Y,DING N,GENG Z,et al.An optimized long short-term memory network based fault diagnosis model for chemical processes[J].Journal of Process Control,2020,92:161-168. [24] 陈保家,陈学力,沈保明,等.CNN-LSTM深度神经网络在滚动轴承故障诊断中的应用[J].西安交通大学学报,2021,55(6):28-36. [25] 邢砾文,姚文凯,黄 莹.基于深度学习的含未知复合故障多传感器信号故障诊断[J].重庆大学学报(自然科学版),2020,43(9):93-100. [26] 郑一珍,牛蔺楷,熊晓燕,等.基于一维卷积神经网络的圆柱滚子轴承保持架故障诊断[J].振动与冲击,2021,40(19):230-238. [27] GAO X,YANG F,FENG E.A process fault diagnosis method using multi-time scale dynamic feature extraction based on convolutional neural network[J].The Canadian Journal of Chemical Engineering,2020,98(6):1280-1292. [28] LI W,LIU Y,LI Y,et al.Series arc fault diagnosis and line selection method based on recurrent neural network[J].IEEE Access,2020,8:177815-177822. [29] LEI J,LIU C,JIANG D.Fault diagnosis of wind turbine based on long short-term memory networks[J].Renewable Energy,2019,133:422-432. [30] ZHANG H,SUN S,BO J.Sequential fault diagnosis based on LSTM neural network[J].IEEE Access,2018,6(99):12929-12939. [31] 王太勇,王廷虎,王 鹏,等.基于注意力机制BiLSTM的设备智能故障诊断方法[J].天津大学学报,2020,53(6):601-608. [32] 张立鹏,毕凤荣,程建刚,等.基于注意力BiGRU的机械故障诊断方法研究[J].振动与冲击,2021,40(5):113-118. [33] MU K,LUO L,WANG Q,et al.Industrial process monitoring and fault diagnosis based on temporal attention augmented deep network[J].Journal of Information Processing Systems,2021,17(2):242-252. [34] YIN S,DING S X,HAGHANI A,et al.A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process-science direct[J].Journal of Process Control,2012,22(9):1567-1581. |