[1] 吕凤霞,缪 益,别锋锋,等.ICEEMDAN和GS-SVM算法在滚动轴承声发射故障诊断中的应用研究 [J].噪声与振动控制,2022,42(6):92-97. [2] 赵 磊,张永祥,朱丹宸.基于TVD和ICEEMDAN的滚动轴承微弱故障特征提取 [J].海军工程大学学报,2020,32(4):61-66. [3] 胡爱军,吉新星,向 玲,等.滚动轴承非线性时变参数动力学模型与故障机理研究 [J].机械工程学报,2022,58(19):139-147. [4] GAO T,CAO S Q.Paroxysmal impulse vibration phenomena and mechanism of a dual-rotor system with an outer raceway defect of the inter-shaft bearing [J].Mechanical Systems and Signal Processing,2021,157:107730. [5] 郑龙魁,向 阳,盛晨兴.故障滚动轴承的非线性动力学建模与振动分析 [J].哈尔滨工程大学学报,2022,43(5):681-688. [6] LU S L,HE Q B,WANG J.A review of stochastic resonance inrotating machine fault detection [J].Mechanical Systems and Signal Processing,2019,116:230-260. [7] 肖茂华,张存义,傅秀清,等.基于ICEEMDAN和小波阈值的滚动轴承故障特征提取方法 [J].南京农业大学学报,2018,41(4):767-774. [8] SHAN Z,WANG Z Q,YANG J H,et al.Novel time-frequency mode decomposition and Information fusion for bearing fault diagnosis under varying-speed condition [J].IEEE Transactionson on Instrumentation and Measurement,2023,72:3511210. [9] 陈 鹏,赵小强,朱奇先.基于VMD-MPE-KPCA特征提取与MRV-M相混合的滚动轴承故障诊断方法 [J].兰州理工大学学报,2020,46(5):92-99. [10] ZHONG X Y,MEI Q,GAO X,et al.Fault diagnosis of rolling bearings based on improved direct fast iterative filtering and spectral amplitude modulation [J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2022,236(9):5111-5123. [11] 周 阳,赵凤强,乔 浩,等.基于ICEEMDAN和松鼠算法优化极限学习机的滚动轴承故障诊断 [J].大连民族大学学报,2023,25(3):211-217. [12] SAHU P K,RAI R N.Fault diagnosis of rolling bearing based on an improved denoising technique using complete ensemble empirical mode decomposition and adaptive thresholding method [J].Journal of Vibration Engineering and Technologies,2023,11(2):513-535. [13] 宋治惠.基于CEEMDAN的滚动轴承早期故障特征提取方法研究 [D].天津:天津大学,2017. [14] LIU Z G,SUN W L,ZENG J J.A new short-term load forecasting method of power system based on EEMD and SS-PSO [J].Neural Computing and Applications,2014,24(3/4):973-983. [15] 赵荣珍,张 琛,邓林峰.基于EEMD与模糊信息熵的旋转机械故障诊断方法 [J].兰州理工大学学报,2020,46(3):39-44. [16] TORRES M E,COLOMINAS M A,SCHLOTTHAUER G,et al.A complete ensemble empirical mode decomposition with adaptive noise [C]//IEEE International Conference on Acoustics,Speech, and Signal Processing.New York:IEEE,2011. [17] GU J,PENG Y X.An improved complementary ensemble empirical mode decomposition method and its application in rolling bearing fault diagnosis [J].Digital Signal Processing,2021,113(1):103050. [18] COLOMINAS M A,SCHLOTTHAUER G,TORRES M E.Improved complete ensemble EMD:a suitable tool for biomedical signal processing [J].Biomedical Signal Processing and Control,2014,14(1):19-29. [19] LI R,RAN C,ZHANG B,et al.Rolling bearings fault diagnosis based on improved complete ensemble empirical mode decomposition with adaptive noise,nonlinear entropy,and ensemble SVM [J].Applied Sciences-Basel,2020,10(16):5542-5559. [20] ZHAO Q C,WANG J X,YIN J H,et al.Peak envelope spectrum Fourier decomposition method and its application in fault diagnosis of rolling bearings [J].Measurement,2022,198:111450. [21] SHARMA A,KUMAR P,VINAYAK H K,et al.Steel truss bridge vibration-based condition monitoring using Savitzky-Golay filter,Hilbert transform,MUSIC and ESPRIT [J].Journal of Engineering Design and Technology,2022,20(5):1297-1319. [22] 刘东东,程卫东,温伟刚.基于线调频小波路径追踪和逐步解调滤波的滚动轴承故障诊断 [J].振动与冲击,2019,38(11):88-94. |